Traceback (most recent call last): File "D:/pycharm/projects/Pythoneeee/projects/最优化期末老师帮.py", line 40, in <module> prop_mat = np.column_stack((prob_fit / logit_fit, TypeError: unsupported operand type(s) for /: 'GaussianNB' and 'LogisticRegression'
时间: 2024-03-14 22:47:35 浏览: 196
这个错误提示是因为在进行列合并时,prob_fit和logit_fit的类型分别为GaussianNB和LogisticRegression,而这两个类型无法进行除法操作。因此,需要先将它们转换为可以进行除法操作的类型。
在scikit-learn库中,GaussianNB和LogisticRegression模型的系数矩阵可以通过调用相应模型对象的`theta_`和`coef_`属性来获取。因此,可以按照如下方式修改代码:
```python
import numpy as np
from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import LogisticRegression
# 创建基于概率的模型
prob_model = GaussianNB()
prob_model.fit(X_train, y_train)
prob_fit = prob_model.theta_.reshape((-1, 1))
# 创建基于逻辑回归的模型
logit_model = LogisticRegression()
logit_model.fit(X_train, y_train)
logit_fit = logit_model.coef_.T
# 创建基于线性回归的模型
linear_model = LinearRegression()
linear_model.fit(X_train, y_train)
linear_fit = linear_model.coef_
# 将三个模型的系数矩阵按列合并
prop_mat = np.column_stack((prob_fit / logit_fit, linear_fit))
```
在这里,`theta_`属性返回GaussianNB模型的每个特征的均值向量,需要将其reshape为列向量。`coef_`属性返回LogisticRegression模型的系数矩阵,需要进行转置后才能合并。最后,将三个模型的系数矩阵按列合并即可。
阅读全文