python中scatter随机选取颜色

时间: 2023-09-27 20:07:09 浏览: 123
在Python中,可以使用`scatter`函数绘制散点图,并且可以通过设置`color`参数来指定每个散点的颜色。如果要随机选取颜色,可以使用`random`模块来生成随机的RGB颜色值。下面是一个示例代码: ```python import matplotlib.pyplot as plt import numpy as np # 生成随机数据 x = np.random.rand(100) y = np.random.rand(100) # 生成随机颜色 colors = np.random.rand(100, 3) # 绘制散点图 plt.scatter(x, y, color=colors) # 显示图形 plt.show() ``` 在上面的代码中,`np.random.rand(100, 3)`生成了一个100行3列的数组,每个元素都是0到1之间的随机数,表示RGB颜色的三个分量。然后将这个数组作为`color`参数传递给`scatter`函数,即可实现随机选取颜色的散点图绘制。
相关问题

利用Python实现话题测试,要求1. 数据预测处理:利用jieba分词对每篇文档进行分词;利用TF-ID对F每篇文档提取关键特征词;利用特征征词的 TF-IDF 值得作为文档的特征向量。 2. 对预期处理后的文档(每篇取文档用特殊征向量表示),从每类中随机选取40篇文档,共得到40×5=200篇文档。 3.对提的20 0篇文档,采用K-means算法,划分5个码,每个码代表一个类4.画出聚合类结果散点图,同时计算FMI指数

好的,首先需要准备一些数据和库: 1. 中文停用词表,可以从网上下载或自己整理。 2. 中文语料库,可以是多个文本文件。 3. jieba库,用于分词。 4. sklearn库,用于TF-IDF和K-means算法。 5. numpy和matplotlib库,用于画图和计算FMI指数。 下面是代码实现过程: ```python import jieba import os from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.cluster import KMeans import numpy as np import matplotlib.pyplot as plt # 读取停用词表 stopwords = set() with open('stopwords.txt', 'r', encoding='utf-8') as f: for line in f.readlines(): stopwords.add(line.strip()) # 读取语料库 corpus = [] labels = [] for i, folder in enumerate(os.listdir('corpus')): for file in os.listdir('corpus/'+folder): with open('corpus/'+folder+'/'+file, 'r', encoding='utf-8') as f: content = f.read() words = [word for word in jieba.cut(content) if word not in stopwords] corpus.append(' '.join(words)) labels.append(i) # 计算TF-IDF值 vectorizer = TfidfVectorizer() X = vectorizer.fit_transform(corpus) # 选取40篇文档 indices = np.random.choice(range(len(corpus)), size=200, replace=False) X_selected = X[indices] labels_selected = [labels[i] for i in indices] # K-means聚类 kmeans = KMeans(n_clusters=5) kmeans.fit(X_selected) pred_labels = kmeans.predict(X_selected) # 画散点图 plt.scatter(X_selected[:, 0], X_selected[:, 1], c=pred_labels) plt.show() # 计算FMI指数 from sklearn.metrics import fowlkes_mallows_score print('FMI:', fowlkes_mallows_score(labels_selected, pred_labels)) ``` 其中,`corpus`文件夹下存放语料库,每个子文件夹代表一个类别,文件夹中存放多个文本文件。 运行后会得到一个散点图,每个点代表一篇文档,颜色代表其所属的聚类簇。 最后输出FMI指数。

A11Data,mat中共有九种类别的数据,每种类别包含1000个样本,每个样本数据的维度是256维,即9000*256。label,mat中包含A11Data对应的标签,数值范围是从0-9,即第一类数据的对应的标签为0,第二类数据对应的标签为1...以此类推。作业要求如下:。总体要求:选择两类数据与其对应的标签作为训练数据和训练标签,训练-个SVM模型,并用测试数据测试模型分类的准确率。具体如下:。1.对于A11Data中的数据,选择其中两类数据作为训练数据,同时选择对应的标签。如:选择第1和第3类数据作为训练数据,则标签应该为0和2。。2.对于每类训练数据,随机选取200-个样本作为训练数据,存放在变量名为Xtrain的变量中;随机选取100个样本作为测试数据,存放在变量名为Xtest的变量中。即Xtrain和Xtest的数据维度分别是400*256和200*256。*3.对于标签,每类样本选择200个标签作为训练样本对应的标签,存放在变量名为Ytrain的变量中;同时每类样本选择100个标签作为测试样本的标签,变量名为Ytest。"4.使用Xtrain和Ytrain.训练SVM模型,并用Xtest和Ytest进行测试。核函数自选。。5.尝试对分类结果进行可视化,要求可视化图包含样本点、超平面、支持向量等,

好的,您的问题是如何对分类结果进行可视化,包含样本点、超平面、支持向量等。 对于SVM模型的可视化,可以使用matplotlib库进行实现。具体步骤如下: 1. 首先,使用训练数据进行SVM模型的训练,得到模型参数。 2. 使用测试数据进行预测,并计算准确率。 3. 对于可视化,可以绘制出训练数据和测试数据的散点图,并使用不同的颜色来表示不同的类别。 4. 绘制超平面,可以使用模型参数来计算超平面的截距和法向量,从而得到超平面的方程。 5. 绘制支持向量,可以使用模型参数中的支持向量的索引,从而得到支持向量的坐标。 6. 最后,将绘制出来的图像保存或展示出来。 以下是示例代码: ```python import numpy as np from sklearn import svm import matplotlib.pyplot as plt # 读取数据 data = np.load('A11Data.mat') X = data['A11Data'] y = data['label'].ravel() # 选择两类数据作为训练数据 X_train = np.concatenate((X[y==0][:200], X[y==1][:200])) X_test = np.concatenate((X[y==0][200:300], X[y==1][200:300])) y_train = np.concatenate((y[y==0][:200], y[y==1][:200])) y_test = np.concatenate((y[y==0][200:300], y[y==1][200:300])) # SVM模型的训练 clf = svm.SVC(kernel='linear') clf.fit(X_train, y_train) # 预测测试数据 y_pred = clf.predict(X_test) # 计算准确率 accuracy = np.mean(y_pred == y_test) print('Accuracy:', accuracy) # 绘制散点图 plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=plt.cm.Paired) plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=plt.cm.Paired, marker='x') # 绘制超平面 w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(-5, 5) yy = a * xx - (clf.intercept_[0]) / w[1] plt.plot(xx, yy, 'k-') # 绘制支持向量 for i in clf.support_: plt.scatter(X_train[i, 0], X_train[i, 1], s=80, facecolors='none', edgecolors='k') plt.show() ``` 其中,X_train和X_test的维度分别是(400, 256)和(200, 256),y_train和y_test的维度分别是(400,)和(200,)。在绘制散点图时,使用不同的颜色来表示不同的类别。绘制超平面时,计算超平面的截距和法向量,并使用matplotlib库的plot函数绘制出来。绘制支持向量时,使用模型参数中的支持向量的索引,从而得到支持向量的坐标,并使用scatter函数绘制出来。最终,使用show函数将图像展示出来。
阅读全文

相关推荐

大家在看

recommend-type

LTE Signaling & Protocol Analysis Focus: E-UTRAN and UE

非常不错,采用问答的方式来学习LTE和EPC,本章主要关注于UE和RAN部分。 This eBook is a must for everybody who requires a detailed understanding of the protocols and signaling procedures within E-UTRAN and the EPC. In that respect the clear focus of this course is on the protocols of the UE and the E-UTRAN. The eBook starts with a review of the LTE physical layer and the concepts and protocol stacks of E-UTRAN. This part concludes with the review of the EPS network architecture. Immediately afterwards we jump into real-life call flows and scenarios and confront the student with the look & feel of the LTE protocol suite. This part ends with an assessment of what will be the focus of the following chapters. The next chapters are dedicated to the different protocols EMM, ESM, MAC, RLC, RRC, S1-AP, X2-AP, SGs-AP and S101-AP. The eBook concludes with the presentation and analysis of LTE signaling flows and real-life call flows.
recommend-type

任务执行器-用于ad9834波形发生器(dds)的幅度控制电路

7.2 任务执行器 堆垛机 概述 堆垛机是一种特殊类型的运输机,专门设计用来与货架一起工作。堆垛机在两排货架间的巷 道中往复滑行,提取和存入临时实体。堆垛机可以充分展示伸叉、提升和行进动作。提升和 行进运动是同时进行的,但堆垛机完全停车后才会进行伸叉。 详细说明 堆垛机是任务执行器的一个子类。它通过沿着自身x轴方向行进的方式来实现偏移行进。它 一直行进直到与目的地位置正交,并抬升其载货平台。如果偏移行进是要执行装载或卸载任 务,那么一完成偏移,它就会执行用户定义的装载/卸载时间,将临时实体搬运到其载货平 台,或者从其载货平台搬运到目的位置。 默认情况下,堆垛机不与导航器相连。这意味着不执行行进任务。取尔代之,所有行进都采 用偏移行进的方式完成。 关于将临时实体搬运到堆垛机上的注释:对于一个装载任务,如果临时实体处于一个不断刷 新临时实体位置的实体中,如传送带时,堆垛机就不能将临时实体搬运到载货平台上。这种 情况下,如果想要显示将临时实体搬运到载货平台的过程,则需确保在模型树中,堆垛机排 在它要提取临时实体的那个实体的后面(在模型树中,堆垛机必须排在此实体下面)。 除了任务执行器所具有的标准属性外,堆垛机具有建模人员定义的载货平台提升速度和初始 提升位置。当堆垛机空闲或者没有执行偏移行进任务时,载货平台将回到此初始位置的高度。 332 美国Flexsim公司&北京创时能科技发展有限公司版权所有【010-82780244】
recommend-type

不同拉压模量弹性力学问题研究的新进展

不同拉压模量弹性力学问题研究的新进展,赵慧玲,叶志明,拉压不同模量弹性体具有材料非线性特征,不同模量本构关系受到材料本身及结构各点的应力、应变状态等因素的综合影响。本文总结了
recommend-type

【管道瞬变流】特征线法管道瞬变流计算【含Matlab源码 2773期】.zip

Matlab领域上传的全部代码均可运行,亲测可用,尽我所能,为你服务; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,可私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、物理应用 仿真:导航、地震、电磁、电路、电能、机械、工业控制、水位控制、直流电机、平面电磁波、管道瞬变流、刚度计算 光学:光栅、杨氏双缝、单缝、多缝、圆孔、矩孔衍射、夫琅禾费、干涉、拉盖尔高斯、光束、光波、涡旋 定位问题:chan、taylor、RSSI、music、卡尔曼滤波UWB 气动学:弹道、气体扩散、龙格库弹道 运动学:倒立摆、泊车 天体学:卫星轨道、姿态 船舶:控制、运动 电磁学:电场分布、电偶极子、永磁同步、变压器
recommend-type

天线测试手册

能不说么?实在是没说的了。其实就这点了,真的,实在没说的了

最新推荐

recommend-type

python scatter函数用法实例详解

Python 的 `scatter` 函数是 `matplotlib.pyplot` 模块中的一个重要组成部分,它主要用于创建散点图。散点图是一种数据可视化工具,可以帮助我们观察两个变量之间的关系,尤其是在数据量较大或者数据分布不规则时尤...
recommend-type

python实现随机漫步算法

`random`模块的`choice`函数在这里起到了关键作用,它能从给定的序列中随机选取一个元素,使得我们可以随机决定方向和距离。 接下来,代码使用了`matplotlib.pyplot`库来可视化随机漫步的结果。`plt.scatter`函数...
recommend-type

Python中三维坐标空间绘制的实现

本文将详细讲解如何在Python中实现三维坐标空间的绘制,包括绘制点、线和面。 首先,我们要引入必要的库,这通常是`matplotlib`库中的`pyplot`模块以及`mpl_toolkits.mplot3d`模块,它们提供了绘制三维图形的功能。...
recommend-type

精选毕设项目-微笑话.zip

精选毕设项目-微笑话
recommend-type

免安装JDK 1.8.0_241:即刻配置环境运行

资源摘要信息:"JDK 1.8.0_241 是Java开发工具包(Java Development Kit)的版本号,代表了Java软件开发环境的一个特定发布。它由甲骨文公司(Oracle Corporation)维护,是Java SE(Java Platform, Standard Edition)的一部分,主要用于开发和部署桌面、服务器以及嵌入式环境中的Java应用程序。本版本是JDK 1.8的更新版本,其中的241代表在该版本系列中的具体更新编号。此版本附带了Java源码,方便开发者查看和学习Java内部实现机制。由于是免安装版本,因此不需要复杂的安装过程,解压缩即可使用。用户配置好环境变量之后,即可以开始运行和开发Java程序。" 知识点详细说明: 1. JDK(Java Development Kit):JDK是进行Java编程和开发时所必需的一组工具集合。它包含了Java运行时环境(JRE)、编译器(javac)、调试器以及其他工具,如Java文档生成器(javadoc)和打包工具(jar)。JDK允许开发者创建Java应用程序、小程序以及可以部署在任何平台上的Java组件。 2. Java SE(Java Platform, Standard Edition):Java SE是Java平台的标准版本,它定义了Java编程语言的核心功能和库。Java SE是构建Java EE(企业版)和Java ME(微型版)的基础。Java SE提供了多种Java类库和API,包括集合框架、Java虚拟机(JVM)、网络编程、多线程、IO、数据库连接(JDBC)等。 3. 免安装版:通常情况下,JDK需要进行安装才能使用。但免安装版JDK仅需要解压缩到磁盘上的某个目录,不需要进行安装程序中的任何步骤。用户只需要配置好环境变量(主要是PATH、JAVA_HOME等),就可以直接使用命令行工具来运行Java程序或编译代码。 4. 源码:在软件开发领域,源码指的是程序的原始代码,它是由程序员编写的可读文本,通常是高级编程语言如Java、C++等的代码。本压缩包附带的源码允许开发者阅读和研究Java类库是如何实现的,有助于深入理解Java语言的内部工作原理。源码对于学习、调试和扩展Java平台是非常有价值的资源。 5. 环境变量配置:环境变量是操作系统中用于控制程序执行环境的参数。在JDK中,常见的环境变量包括JAVA_HOME和PATH。JAVA_HOME是JDK安装目录的路径,配置此变量可以让操作系统识别到JDK的位置。PATH变量则用于指定系统命令查找的路径,将JDK的bin目录添加到PATH后,就可以在命令行中的任何目录下执行JDK中的命令,如javac和java。 在实际开发中,了解并正确配置JDK对于Java开发者来说是一个基础且重要的环节。掌握如何安装和配置JDK,以及如何理解JDK中的源码和各种工具,对于进行Java编程和解决问题至关重要。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【提升效率与稳定性】:深入掌握单相整流器的控制策略

# 摘要 单相整流器作为电力电子技术的基础设备,广泛应用于电力系统和工业自动化领域。本文首先概述了单相整流器的基本概念,详细分析了其工作原理,包括电力电子器件的角色、数学模型以及控制策略。随后,针对控制技术进行了深入探讨,包括传统控制技术如PID控制和高级控制策略如模糊逻辑控制及自适应控制的应用。进一步地,本文提出了一系列提升单相整流器性能的方法,如效率提升策略、系统稳定性措施,以及性能评估与优化方案。最后,文章探讨了单相整流器在不同领域的应用案例,并对新兴技术与市场趋势进行了展望。 # 关键字 单相整流器;电力电子器件;数学模型;控制策略;性能提升;应用案例 参考资源链接:[单相PWM整
recommend-type

你看这是ashx映射的cs文件初始代码,你看这里边根本就没有写对action参数进行任何操作但你.ashx?action=submit这样去做他就能返回出数据这是为什么

在ASP.NET中,.ashx文件(也称为HTTP处理程序)用于处理HTTP请求并返回响应。即使在初始代码中没有对action参数进行任何操作,系统仍然可以通过默认的ProcessRequest方法处理请求并返回数据。 当你在URL中传递参数(如?action=submit)时,这些参数会被包含在请求的查询字符串中。虽然你的代码没有显式地处理这些参数,但默认的ProcessRequest方法会接收这些参数并执行一些默认操作。 以下是一个简单的.ashx文件示例: ```csharp <%@ WebHandler Language="C#" Class="MyHandler" %> us
recommend-type

机器学习预测葡萄酒评分:二值化品尝笔记的应用

资源摘要信息:"wine_reviewer:使用机器学习基于二值化的品尝笔记来预测葡萄酒评论分数" 在当今这个信息爆炸的时代,机器学习技术已经被广泛地应用于各个领域,其中包括食品和饮料行业的质量评估。在本案例中,将探讨一个名为wine_reviewer的项目,该项目的目标是利用机器学习模型,基于二值化的品尝笔记数据来预测葡萄酒评论的分数。这个项目不仅对于葡萄酒爱好者具有极大的吸引力,同时也为数据分析和机器学习的研究人员提供了实践案例。 首先,要理解的关键词是“机器学习”。机器学习是人工智能的一个分支,它让计算机系统能够通过经验自动地改进性能,而无需人类进行明确的编程。在葡萄酒评分预测的场景中,机器学习算法将从大量的葡萄酒品尝笔记数据中学习,发现笔记与葡萄酒最终评分之间的相关性,并利用这种相关性对新的品尝笔记进行评分预测。 接下来是“二值化”处理。在机器学习中,数据预处理是一个重要的步骤,它直接影响模型的性能。二值化是指将数值型数据转换为二进制形式(0和1)的过程,这通常用于简化模型的计算复杂度,或者是数据分类问题中的一种技术。在葡萄酒品尝笔记的上下文中,二值化可能涉及将每种口感、香气和外观等属性的存在与否标记为1(存在)或0(不存在)。这种方法有利于将文本数据转换为机器学习模型可以处理的格式。 葡萄酒评论分数是葡萄酒评估的量化指标,通常由品酒师根据酒的品质、口感、香气、外观等进行评分。在这个项目中,葡萄酒的品尝笔记将被用作特征,而品酒师给出的分数则是目标变量,模型的任务是找出两者之间的关系,并对新的品尝笔记进行分数预测。 在机器学习中,通常会使用多种算法来构建预测模型,如线性回归、决策树、随机森林、梯度提升机等。在wine_reviewer项目中,可能会尝试多种算法,并通过交叉验证等技术来评估模型的性能,最终选择最适合这个任务的模型。 对于这个项目来说,数据集的质量和特征工程将直接影响模型的准确性和可靠性。在准备数据时,可能需要进行数据清洗、缺失值处理、文本规范化、特征选择等步骤。数据集中的标签(目标变量)即为葡萄酒的评分,而特征则来自于品酒师的品尝笔记。 项目还提到了“kaggle”和“R”,这两个都是数据分析和机器学习领域中常见的元素。Kaggle是一个全球性的数据科学竞赛平台,提供各种机器学习挑战和数据集,吸引了来自全球的数据科学家和机器学习专家。通过参与Kaggle竞赛,可以提升个人技能,并有机会接触到最新的机器学习技术和数据处理方法。R是一种用于统计计算和图形的编程语言和软件环境,它在统计分析、数据挖掘、机器学习等领域有广泛的应用。使用R语言可以帮助研究人员进行数据处理、统计分析和模型建立。 至于“压缩包子文件的文件名称列表”,这里可能存在误解或打字错误。通常,这类名称应该表示存储项目相关文件的压缩包,例如“wine_reviewer-master.zip”。这个压缩包可能包含了项目的源代码、数据集、文档和其它相关资源。在开始项目前,研究人员需要解压这个文件包,并且仔细阅读项目文档,以便了解项目的具体要求和数据格式。 总之,wine_reviewer项目是一个结合了机器学习、数据处理和葡萄酒品鉴的有趣尝试,它不仅展示了机器学习在实际生活中的应用潜力,也为研究者提供了丰富的学习资源和实践机会。通过这种跨领域的合作,可以为葡萄酒行业带来更客观、一致的评价标准,并帮助消费者做出更加明智的选择。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依