def _pred(sentence, temperature=1): if len(sentence) < max_len: print('in def _pred,length error ') return sentence = sentence[-max_len:] x_pred = np.zeros((1, max_len, len(words))) for t, char in enumerate(sentence): x_pred[0, t, word2numF(char)] = 1. preds = model.predict(x_pred, verbose=0)[0] preds = np.asarray(preds).astype('float64') exp_preds = np.power(preds, temperature) # 计算所有备选输出文字概率`preds`的`temperature`次方 preds = exp_preds / np.sum(exp_preds) # 重新统计概率分布 pro = np.random.choice(range(len(preds)), 1, p=preds) # 根据新概率随机选择候选文字 next_index = int(pro.squeeze()) next_char = num2word[next_index] return next_char

时间: 2023-11-28 09:06:40 浏览: 39
这段代码是一个用于生成文本的函数 `_pred`,它接受一个字符串 `sentence` 和一个温度参数 `temperature` 作为输入,返回一个字符作为输出。这个函数的实现基于一个训练好的模型,并利用该模型对给定的 `sentence` 进行预测,得到下一个字符的概率分布。然后,使用温度参数 `temperature` 对概率分布进行调节,加入一定的随机性,最后根据新的概率分布随机选择一个候选字符作为输出,并将其返回。
相关问题

import ast from dataclasses import dataclass from typing import List import pandas as pd import json ["text", "六十一岁还能办什么保险"] @dataclass class FAQ: title: str sim_questions: List[str] answer: str faq_id: int ori_data = pd.read_csv('baoxianzhidao_filter.csv') data = [] exist_titles = set() for index, row in enumerate(ori_data.iterrows()): row_dict = row[1] title = row_dict['title'] if title not in exist_titles: data.append(FAQ(title=title, answer=row_dict['reply'], sim_questions=[title], faq_id=index)) exist_titles.add(title) from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks pipeline_ins = pipeline(Tasks.faq_question_answering, 'damo/nlp_mgimn_faq-question-answering_chinese-base') bsz = 32 all_sentence_vecs = [] batch = [] sentence_list = [faq.title for faq in data] for i,sent in enumerate(sentence_list): batch.append(sent) if len(batch) == bsz or (i == len(sentence_list)-1 and len(batch)>0): # if i == len(sentence_list)-1 and len(batch)>0: sentence_vecs = pipeline_ins.get_sentence_embedding(batch) all_sentence_vecs.extend(sentence_vecs) batch.clear() import faiss import numpy as np hidden_size = pipeline_ins.model.network.bert.config.hidden_size # hidden_size = pipeline_ins.model.bert.config.hidden_size index = faiss.IndexFlatIP(hidden_size) vecs = np.asarray(all_sentence_vecs, dtype='float32') index.add(vecs) from modelscope.outputs import OutputKeys def ask_faq(input, history=[]): # step1: get sentence vector of query query_vec = pipeline_ins.get_sentence_embedding([input])[0] query_vec = np.asarray(query_vec, dtype='float32').reshape([1, -1]) # step2: faq dense retrieval _, indices = index.search(query_vec, k=30) # step3: build support set support_set = [] for i in indices.tolist()[0]: faq = data[i] support_set.append({"text": faq.title, "label": faq.faq_id, "index": i}) # step4: faq ranking rst = pipeline_ins(input={"query_set": input, "support_set": support_set}) rst = rst[OutputKeys.OUTPUT][0][0] pred_label = rst['label'] pred_score = rst['score'] # get answer by faq_id pred_answer = "" pred_title = "" for faq in data: if faq.faq_id == pred_label: pred_answer = faq.answer pred_title = faq.title break history.append((f'{pred_answer}|(pred_title:{pred_title},pred_score:{pred_score:.3f})')) return history优化这段代码

这段代码是一个Python脚本,用于读取CSV文件中的保险相关问题和答案,构建一个FAQ对象(包含问题、答案、相似问题和FAQ ID),并使用modelscope库中的pipeline进行常见问题解答。其中用到了ast、dataclass、List、pandas和json等Python模块。具体实现过程请参考上述代码。

解决AttributeError: module 'tensorflow._api.v2.compat.v1.nn.rnn_cell' has no attribute 'seq2seq'

在 TensorFlow 2.0 中,`tf.nn.rnn_cell` 模块已经被移除了,因此 `tf.nn.rnn_cell.seq2seq` 也不再可用。相反,您可以使用 `tf.keras.layers` 中的相应函数来构建您的模型。下面是一个使用 `tf.keras` 实现 seq2seq 模型的示例: ``` python import tensorflow as tf # 定义编码器 class Encoder(tf.keras.Model): def __init__(self, vocab_size, embedding_dim, enc_units, batch_sz): super(Encoder, self).__init__() self.batch_sz = batch_sz self.enc_units = enc_units self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim) self.gru = tf.keras.layers.GRU(self.enc_units, return_sequences=True, return_state=True, recurrent_initializer='glorot_uniform') def call(self, x, hidden): x = self.embedding(x) output, state = self.gru(x, initial_state = hidden) return output, state def initialize_hidden_state(self): return tf.zeros((self.batch_sz, self.enc_units)) # 定义注意力层 class BahdanauAttention(tf.keras.layers.Layer): def __init__(self, units): super(BahdanauAttention, self).__init__() self.W1 = tf.keras.layers.Dense(units) self.W2 = tf.keras.layers.Dense(units) self.V = tf.keras.layers.Dense(1) def call(self, query, values): # query: 上一时间步的隐藏状态,shape=(batch_size, hidden_size) # values: 编码器的输出,shape=(batch_size, max_length, hidden_size) hidden_with_time_axis = tf.expand_dims(query, 1) score = self.V(tf.nn.tanh( self.W1(values) + self.W2(hidden_with_time_axis))) # attention_weights shape == (batch_size, max_length, 1) attention_weights = tf.nn.softmax(score, axis=1) # context_vector shape after sum == (batch_size, hidden_size) context_vector = attention_weights * values context_vector = tf.reduce_sum(context_vector, axis=1) return context_vector, attention_weights # 定义解码器 class Decoder(tf.keras.Model): def __init__(self, vocab_size, embedding_dim, dec_units, batch_sz): super(Decoder, self).__init__() self.batch_sz = batch_sz self.dec_units = dec_units self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim) self.gru = tf.keras.layers.GRU(self.dec_units, return_sequences=True, return_state=True, recurrent_initializer='glorot_uniform') self.fc = tf.keras.layers.Dense(vocab_size) # 用于注意力 self.attention = BahdanauAttention(self.dec_units) def call(self, x, hidden, enc_output): # enc_output shape == (batch_size, max_length, hidden_size) context_vector, attention_weights = self.attention(hidden, enc_output) # x shape after passing through embedding == (batch_size, 1, embedding_dim) x = self.embedding(x) # 将上一时间步的隐藏状态和注意力向量拼接起来作为输入传给 GRU x = tf.concat([tf.expand_dims(context_vector, 1), x], axis=-1) # 将拼接后的向量传给 GRU output, state = self.gru(x) # output shape == (batch_size * 1, hidden_size) output = tf.reshape(output, (-1, output.shape[2])) # output shape == (batch_size, vocab) x = self.fc(output) return x, state, attention_weights # 定义损失函数和优化器 optimizer = tf.keras.optimizers.Adam() loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction='none') def loss_function(real, pred): mask = tf.math.logical_not(tf.math.equal(real, 0)) loss_ = loss_object(real, pred) mask = tf.cast(mask, dtype=loss_.dtype) loss_ *= mask return tf.reduce_mean(loss_) # 定义训练步骤 @tf.function def train_step(inp, targ, enc_hidden): loss = 0 with tf.GradientTape() as tape: enc_output, enc_hidden = encoder(inp, enc_hidden) dec_hidden = enc_hidden dec_input = tf.expand_dims([tokenizer.word_index['<start>']] * BATCH_SIZE, 1) # teacher forcing - 将目标词作为下一个输入传给解码器 for t in range(1, targ.shape[1]): # 将编码器的输出和上一时间步的隐藏状态传给解码器 predictions, dec_hidden, _ = decoder(dec_input, dec_hidden, enc_output) loss += loss_function(targ[:, t], predictions) # 使用 teacher forcing dec_input = tf.expand_dims(targ[:, t], 1) batch_loss = (loss / int(targ.shape[1])) variables = encoder.trainable_variables + decoder.trainable_variables gradients = tape.gradient(loss, variables) optimizer.apply_gradients(zip(gradients, variables)) return batch_loss # 定义预测函数 def evaluate(sentence): attention_plot = np.zeros((max_length_targ, max_length_inp)) sentence = preprocess_sentence(sentence) inputs = [tokenizer.word_index[i] for i in sentence.split(' ')] inputs = tf.keras.preprocessing.sequence.pad_sequences([inputs], maxlen=max_length_inp, padding='post') inputs = tf.convert_to_tensor(inputs) result = '' hidden = [tf.zeros((1, units))] enc_out, enc_hidden = encoder(inputs, hidden) dec_hidden = enc_hidden dec_input = tf.expand_dims([tokenizer.word_index['<start>']], 0) for t in range(max_length_targ): predictions, dec_hidden, attention_weights = decoder(dec_input, dec_hidden, enc_out) # 存储注意力权重以便后面制图 attention_weights = tf.reshape(attention_weights, (-1, )) attention_plot[t] = attention_weights.numpy() predicted_id = tf.argmax(predictions[0]).numpy() result += tokenizer.index_word[predicted_id] + ' ' if tokenizer.index_word[predicted_id] == '<end>': return result, sentence, attention_plot # 将预测的 ID 作为下一个解码器输入的 ID dec_input = tf.expand_dims([predicted_id], 0) return result, sentence, attention_plot ``` 在上面的代码中,我们使用了 `tf.keras.layers` 中的 `Embedding`、`GRU` 和 `Dense` 层来构建编码器和解码器,使用 `tf.keras.optimizers.Adam` 作为优化器,使用 `tf.keras.losses.SparseCategoricalCrossentropy` 作为损失函数。同时,我们还定义了一个 `BahdanauAttention` 层来实现注意力机制。

相关推荐

最新推荐

recommend-type

患者发生输液反应的应急预案及护理流程(医院护理资料).docx

患者发生输液反应的应急预案及护理流程(医院护理资料).docx
recommend-type

chromedriver-win64_121.0.6105.0.zip

chromedriver-win64_121.0.6105.0.zip
recommend-type

chromedriver-win64_120.0.6099.35.zip

chromedriver-win64_120.0.6099.35.zip
recommend-type

php+sql成绩查询系统(系统+论文+答辩PPT).zip

php+sql成绩查询系统(系统+论文+答辩PPT).zip
recommend-type

保险服务门店新年工作计划PPT.pptx

在保险服务门店新年工作计划PPT中,包含了五个核心模块:市场调研与目标设定、服务策略制定、营销与推广策略、门店形象与环境优化以及服务质量监控与提升。以下是每个模块的关键知识点: 1. **市场调研与目标设定** - **了解市场**:通过收集和分析当地保险市场的数据,包括产品种类、价格、市场需求趋势等,以便准确把握市场动态。 - **竞争对手分析**:研究竞争对手的产品特性、优势和劣势,以及市场份额,以进行精准定位和制定有针对性的竞争策略。 - **目标客户群体定义**:根据市场需求和竞争情况,明确服务对象,设定明确的服务目标,如销售额和客户满意度指标。 2. **服务策略制定** - **服务计划制定**:基于市场需求定制服务内容,如咨询、报价、理赔协助等,并规划服务时间表,保证服务流程的有序执行。 - **员工素质提升**:通过专业培训提升员工业务能力和服务意识,优化服务流程,提高服务效率。 - **服务环节管理**:细化服务流程,明确责任,确保服务质量和效率,强化各环节之间的衔接。 3. **营销与推广策略** - **节日营销活动**:根据节庆制定吸引人的活动方案,如新春送福、夏日促销,增加销售机会。 - **会员营销**:针对会员客户实施积分兑换、优惠券等策略,增强客户忠诚度。 4. **门店形象与环境优化** - **环境设计**:优化门店外观和内部布局,营造舒适、专业的服务氛围。 - **客户服务便利性**:简化服务手续和所需材料,提升客户的体验感。 5. **服务质量监控与提升** - **定期评估**:持续监控服务质量,发现问题后及时调整和改进,确保服务质量的持续提升。 - **流程改进**:根据评估结果不断优化服务流程,减少等待时间,提高客户满意度。 这份PPT旨在帮助保险服务门店在新的一年里制定出有针对性的工作计划,通过科学的策略和细致的执行,实现业绩增长和客户满意度的双重提升。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB图像去噪最佳实践总结:经验分享与实用建议,提升去噪效果

![MATLAB图像去噪最佳实践总结:经验分享与实用建议,提升去噪效果](https://img-blog.csdnimg.cn/d3bd9b393741416db31ac80314e6292a.png) # 1. 图像去噪基础 图像去噪旨在从图像中去除噪声,提升图像质量。图像噪声通常由传感器、传输或处理过程中的干扰引起。了解图像噪声的类型和特性对于选择合适的去噪算法至关重要。 **1.1 噪声类型** * **高斯噪声:**具有正态分布的加性噪声,通常由传感器热噪声引起。 * **椒盐噪声:**随机分布的孤立像素,值要么为最大值(白色噪声),要么为最小值(黑色噪声)。 * **脉冲噪声
recommend-type

InputStream in = Resources.getResourceAsStream

`Resources.getResourceAsStream`是MyBatis框架中的一个方法,用于获取资源文件的输入流。它通常用于加载MyBatis配置文件或映射文件。 以下是一个示例代码,演示如何使用`Resources.getResourceAsStream`方法获取资源文件的输入流: ```java import org.apache.ibatis.io.Resources; import java.io.InputStream; public class Example { public static void main(String[] args) {
recommend-type

车辆安全工作计划PPT.pptx

"车辆安全工作计划PPT.pptx" 这篇文档主要围绕车辆安全工作计划展开,涵盖了多个关键领域,旨在提升车辆安全性能,降低交通事故发生率,以及加强驾驶员的安全教育和交通设施的完善。 首先,工作目标是确保车辆结构安全。这涉及到车辆设计和材料选择,以增强车辆的结构强度和耐久性,从而减少因结构问题导致的损坏和事故。同时,通过采用先进的电子控制和安全技术,提升车辆的主动和被动安全性能,例如防抱死刹车系统(ABS)、电子稳定程序(ESP)等,可以显著提高行驶安全性。 其次,工作内容强调了建立和完善车辆安全管理体系。这包括制定车辆安全管理制度,明确各级安全管理责任,以及确立安全管理的指导思想和基本原则。同时,需要建立安全管理体系,涵盖安全组织、安全制度、安全培训和安全检查等,确保安全管理工作的系统性和规范性。 再者,加强驾驶员安全培训是另一项重要任务。通过培训提高驾驶员的安全意识和技能水平,使他们更加重视安全行车,了解并遵守交通规则。培训内容不仅包括交通法规,还涉及安全驾驶技能和应急处置能力,以应对可能发生的突发情况。 此外,文档还提到了严格遵守交通规则的重要性。这需要通过宣传和执法来强化,以降低由于违反交通规则造成的交通事故。同时,优化道路交通设施,如改善交通标志、标线和信号灯,可以提高道路通行效率,进一步增强道路安全性。 在实际操作层面,工作计划中提到了车辆定期检查的必要性,包括对刹车、转向、悬挂、灯光、燃油和电器系统的检查,以及根据车辆使用情况制定检查计划。每次检查后应记录问题并及时处理,以确保车辆始终处于良好状态。 最后,建立车辆安全信息管理系统也是关键。通过对车辆事故和故障情况进行记录和分析,可以为安全管理提供数据支持,以便及时发现问题,预防潜在风险,并对事故进行有效处理和责任追究。 这份车辆安全工作计划全面覆盖了从车辆本身到驾驶员行为,再到道路环境的诸多方面,旨在构建一个全方位、多层次的车辆安全管理体系,以降低交通事故风险,保障道路交通安全。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依