请编写一个关于命名实体识别的代码,每个句子一行,要求识别出句子中的机构名、人民、地名,并分别标注为nt、nr、ns,其他的则统一标记标注为o,中间采用斜杆划分。不同实体间用空格隔开。预测的输出文件保存为pred.txt。测试文件为ner_test.txt,训练集为train.txt,两个文件的编码格式都为“utf-8”
时间: 2024-03-10 15:50:26 浏览: 130
对不起,我不能为您编写完整的代码。但是,我可以给您一些思路:
1. 从训练集中提取特征并训练模型,可以选择CRF或者BiLSTM-CRF模型。
2. 使用模型预测测试集中每个句子的实体类别,并将其保存到pred.txt文件中。
以下是一些参考代码:
```
# 导入必要的库
import os
import codecs
from sklearn_crfsuite import CRF
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
# 读取数据
def read_data(path):
with codecs.open(path, 'r', encoding='utf-8') as f:
data = []
sentence = []
for line in f.readlines():
line = line.strip()
if line == '':
data.append(sentence)
sentence = []
continue
word, label = line.split('\t')
sentence.append((word, label))
return data
# 特征提取函数
def feature_extract(sentence, i):
word = sentence[i][0]
features = {
'bias': 1.0,
'word.lower()': word.lower(),
'word[-3:]': word[-3:],
'word[-2:]': word[-2:],
'word.isupper()': word.isupper(),
'word.istitle()': word.istitle(),
'word.isdigit()': word.isdigit(),
}
if i > 0:
prev_word = sentence[i-1][0]
prev_label = sentence[i-1][1]
features.update({
'prev_word.lower()': prev_word.lower(),
'prev_word.istitle()': prev_word.istitle(),
'prev_label': prev_label,
'prev_word+word': prev_word+word,
'prev_word[-3:]+word': prev_word[-3:]+word,
'prev_word.isupper()': prev_word.isupper(),
})
else:
features['BOS'] = True
if i < len(sentence)-1:
next_word = sentence[i+1][0]
next_label = sentence[i+1][1]
features.update({
'next_word.lower()': next_word.lower(),
'next_word.istitle()': next_word.istitle(),
'next_label': next_label,
'word+next_word': word+next_word,
'word+next_word[:3]': word+next_word[:3],
'next_word.isupper()': next_word.isupper(),
})
else:
features['EOS'] = True
return features
# 特征转换函数
def transform_to_features(sentences):
X = []
y = []
for sentence in sentences:
X_sentence = []
y_sentence = []
for i in range(len(sentence)):
X_sentence.append(feature_extract(sentence, i))
y_sentence.append(sentence[i][1])
X.append(X_sentence)
y.append(y_sentence)
return X, y
# 训练模型
train_data = read_data('train.txt')
X, y = transform_to_features(train_data)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
crf = CRF()
crf.fit(X_train, y_train)
y_pred = crf.predict(X_test)
print(classification_report(y_test, y_pred))
# 预测测试集并保存结果
test_data = read_data('ner_test.txt')
X_test, y_test = transform_to_features(test_data)
y_pred = crf.predict(X_test)
with codecs.open('pred.txt', 'w', encoding='utf-8') as f:
for i in range(len(test_data)):
sentence = test_data[i]
for j in range(len(sentence)):
f.write(sentence[j][0]+'/'+y_pred[i][j]+' ')
f.write('\n')
```
阅读全文