Transformer架构估产模型代码
时间: 2023-10-14 19:54:12 浏览: 82
以下是一个简单的使用Transformer架构进行产量预测的Python代码示例:
```
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
# 定义Transformer模型
class TransformerModel(nn.Module):
def __init__(self, input_size, output_size, hidden_size, num_layers, dropout):
super(TransformerModel, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.encoder = nn.Linear(input_size, hidden_size)
self.decoder = nn.Linear(hidden_size, output_size)
self.transformer = nn.Transformer(d_model=hidden_size, nhead=4, num_encoder_layers=num_layers, num_decoder_layers=num_layers, dim_feedforward=hidden_size*2, dropout=dropout)
def forward(self, src):
src = self.encoder(src)
tgt = torch.zeros_like(src)
tgt[:-1] = src[1:]
output = self.transformer(src.unsqueeze(0), tgt.unsqueeze(0))
output = self.decoder(output.squeeze(0))
return output
# 定义产量数据
data = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15])
# 定义模型和优化器
model = TransformerModel(1, 1, 64, 2, 0.1)
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.MSELoss()
# 训练模型
for epoch in range(100):
optimizer.zero_grad()
input_seq = torch.FloatTensor(data[:-1]).unsqueeze(1)
target_seq = torch.FloatTensor(data[1:]).unsqueeze(1)
output_seq = model(input_seq)
loss = criterion(output_seq, target_seq)
loss.backward()
optimizer.step()
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, 100, loss.item()))
# 预测未来的产量
future_seq = np.array([16, 17, 18, 19, 20])
input_seq = torch.FloatTensor(data).unsqueeze(1)
output_seq = model(input_seq)
future_output = model(torch.FloatTensor(future_seq).unsqueeze(1))
print('Predicted Data:', torch.cat((output_seq, future_output), dim=0).detach().numpy().flatten())
```
在上面的代码中,我们首先定义了一个Transformer模型,包括一个编码器、一个解码器和一个Transformer层。然后,我们定义了一组简单的产量数据。接着,我们定义了模型和优化器,并在数据上进行训练。最后,我们使用训练完成的模型来预测未来的产量数据。
阅读全文