请在以下R代码的基础上:library(glmnet) library(ggplot2) # 生成5030的随机数据和30个变量 set.seed(1111) n <- 50 p <- 30 X <- matrix(runif(n * p), n, p) y <- rnorm(n) # 生成三组不同系数的线性模型 y = X1 + 2X2 + 3X3 + e, y = X11 + 2X22 + 3X33 + e, y = X21 + 2X22 + 3X23 + e beta1 <- c(rep(1, 3), rep(0, p - 3)) beta2 <- c(rep(0, 10), rep(1, 3), rep(0, p - 13)) beta3 <- c(rep(0, 20), rep(1, 3), rep(0, p - 23)) y1 <- X %% beta1 + rnorm(n) y2 <- X %% beta2 + rnorm(n) y3 <- X %% beta3 + rnorm(n) # 线性回归中分别计算三组的CV值 cv1 <- cv.glmnet(X, y1, alpha = 0) cv2 <- cv.glmnet(X, y2, alpha = 0) cv3 <- cv.glmnet(X, y3, alpha = 0) # 岭回归中计算三组的CV值并画图 ridge1 <- glmnet(X, y1, alpha = 0) ridge2 <- glmnet(X, y2, alpha = 0) ridge3 <- glmnet(X, y3, alpha = 0)。完成par(3,2)的以lambd为横坐标,一个是以CV error为纵坐标的图,另一个是以Prediction error为纵坐标的图,写出完整的R代码
时间: 2024-02-24 15:56:13 浏览: 97
37.ggplot2绘图使用ggrepel文本标注的详细方法(详解教程).pdf
5星 · 资源好评率100%
以下是完成par(3,2)的以lambd为横坐标,一个是以CV error为纵坐标的图,另一个是以Prediction error为纵坐标的完整R代码:
```R
library(glmnet)
library(ggplot2)
# 生成5030的随机数据和30个变量
set.seed(1111)
n <- 50
p <- 30
X <- matrix(runif(n * p), n, p)
y <- rnorm(n)
# 生成三组不同系数的线性模型
beta1 <- c(rep(1, 3), rep(0, p - 3))
beta2 <- c(rep(0, 10), rep(1, 3), rep(0, p - 13))
beta3 <- c(rep(0, 20), rep(1, 3), rep(0, p - 23))
y1 <- X %*% beta1 + rnorm(n)
y2 <- X %*% beta2 + rnorm(n)
y3 <- X %*% beta3 + rnorm(n)
# 线性回归中分别计算三组的CV值
cv1 <- cv.glmnet(X, y1, alpha = 0)
cv2 <- cv.glmnet(X, y2, alpha = 0)
cv3 <- cv.glmnet(X, y3, alpha = 0)
# 岭回归中计算三组的CV值并画图
ridge1 <- glmnet(X, y1, alpha = 0)
ridge2 <- glmnet(X, y2, alpha = 0)
ridge3 <- glmnet(X, y3, alpha = 0)
# 画图
par(mfrow = c(3, 2))
# 以CV error为纵坐标的图
plot(cv1, main = "CV Error for Model 1")
plot(cv2, main = "CV Error for Model 2")
plot(cv3, main = "CV Error for Model 3")
# 以Prediction error为纵坐标的图
plot(ridge1, xvar = "lambda", main = "Prediction Error for Model 1")
plot(ridge2, xvar = "lambda", main = "Prediction Error for Model 2")
plot(ridge3, xvar = "lambda", main = "Prediction Error for Model 3")
```
阅读全文