bp神经网络实现MINIST分类、
时间: 2023-11-16 13:59:48 浏览: 127
MNIST是一个手写数字图像数据集,其中包含60,000个训练数据和10,000个测试数据。BP神经网络可以用来对MNIST数据集中的手写数字进行分类。
下面是BP神经网络实现MNIST分类的一般步骤:
1. 数据预处理:将MNIST数据集中的手写数字图像转换为数字矩阵,并进行归一化处理。
2. 数据分割:将数据集分为训练集和测试集,一般比例为7:3。
3. 网络构建:构建BP神经网络,设置输入层、隐藏层和输出层的节点数和激活函数。
4. 神经网络训练:使用训练集对神经网络进行训练,通过反向传播算法对网络权重进行更新,直到达到预设的训练次数或误差精度。
5. 神经网络测试:用测试集对训练好的神经网络进行测试,计算分类准确率。
6. 模型优化:根据测试结果对神经网络进行优化,调整网络结构、调整超参数等。
下面是一个Python实现的示例代码:
```
import numpy as np
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# 加载MNIST数据集
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
# 设置神经网络模型参数
learning_rate = 0.01
training_epochs = 100
batch_size = 100
display_step = 1
# 定义输入和输出的占位符
x = tf.placeholder(tf.float32, [None, 784])
y = tf.placeholder(tf.float32, [None, 10])
# 定义神经网络模型
W1 = tf.Variable(tf.random_normal([784, 256]))
b1 = tf.Variable(tf.random_normal([256]))
layer1 = tf.nn.sigmoid(tf.matmul(x, W1) + b1)
W2 = tf.Variable(tf.random_normal([256, 10]))
b2 = tf.Variable(tf.random_normal([10]))
pred = tf.nn.softmax(tf.matmul(layer1, W2) + b2)
# 定义损失函数和优化器
cost = tf.reduce_mean(-tf.reduce_sum(y * tf.log(pred), reduction_indices=1))
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
# 初始化所有变量
init = tf.global_variables_initializer()
# 启动TensorFlow会话
with tf.Session() as sess:
sess.run(init)
# 训练神经网络
for epoch in range(training_epochs):
avg_cost = 0.
total_batch = int(mnist.train.num_examples/batch_size)
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
_, c = sess.run([optimizer, cost], feed_dict={x: batch_xs, y: batch_ys})
avg_cost += c / total_batch
if (epoch+1) % display_step == 0:
print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost))
print("Optimization Finished!")
# 测试神经网络
correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print("Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels}))
```
这个示例代码定义了一个具有一个隐藏层的BP神经网络,使用sigmoid作为激活函数,采用交叉熵作为损失函数,并使用梯度下降法进行优化。最后输出了神经网络的分类准确率。
阅读全文