python 设计一个三层bp网络对数字0-9进行分类。MInist数据集
时间: 2024-09-23 16:06:14 浏览: 85
基于Python和PyTorch框架完成的一个手写数字识别实验源码(带MINIST手写数字数据集).zip
5星 · 资源好评率100%
在Python中,设计一个三层全连接神经网络(Backpropagation Network,BP网络)用于MNIST手写数字识别,通常需要以下步骤:
1. **导入库**:
```python
import numpy as np
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten
```
2. **加载MNIST数据**:
```python
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
```
3. **预处理数据**:
- 将像素值归一化到0-1范围
- 转换为one-hot编码
```python
train_images = train_images.astype('float32') / 255.0
test_images = test_images.astype('float32') / 255.0
train_labels = keras.utils.to_categorical(train_labels)
test_labels = keras.utils.to_categorical(test_labels)
num_classes = train_labels.shape[1]
```
4. **创建模型结构**:
使用`Sequential`模型,添加3层全连接层(隐藏层),每层都包含足够的神经元(比如64个),加上激活函数如ReLU,以及一个输出层(大小为num_classes)。
```python
model = Sequential([
Flatten(input_shape=(28, 28)), # 展平输入
Dense(64, activation='relu'),
Dense(64, activation='relu'),
Dense(num_classes, activation='softmax') # 输出层用softmax激活
])
```
5. **编译模型**:
设置损失函数(通常是交叉熵),优化器(如Adam)和评估指标(accuracy)。
```python
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
```
6. **训练模型**:
```python
model.fit(train_images, train_labels, epochs=10, batch_size=32, validation_split=0.1)
```
7. **评估模型**:
```python
_, test_acc = model.evaluate(test_images, test_labels)
print(f'Test accuracy: {test_acc}')
```
8. **保存和使用模型**:
```python
model.save('mnist_cnn.h5')
```
阅读全文