python蚁群算法实例
时间: 2023-11-06 16:09:17 浏览: 181
基于Python的YQTSP问题编程
Python蚁群算法实例可以通过以下步骤实现:
1. 安装Python蚁群算法库,例如ACO-Python。
2. 定义问题,例如TSP问题。
3. 初始化蚂蚁群和问题参数,例如城市数量、蚂蚁数量、信息素初始值等。
4. 迭代搜索最优解,每个蚂蚁根据信息素和启发式规则选择下一个城市,并更新信息素。
5. 记录最优解和最优路径。
6. 输出结果。
以下是一个简单的Python蚁群算法实例,用于解决TSP问题:
```
import random
import numpy as np
# 定义问题
class TSP:
def __init__(self, n_cities):
self.n_cities = n_cities
self.distance_matrix = np.random.rand(n_cities, n_cities)
def distance(self, city1, city2):
return self.distance_matrix[city1][city2]
# 初始化蚂蚁群和问题参数
class Ant:
def __init__(self, n_cities, alpha, beta, pheromone, start_city):
self.n_cities = n_cities
self.alpha = alpha
self.beta = beta
self.pheromone = pheromone
self.visited = [False] * n_cities
self.visited[start_city] = True
self.current_city = start_city
self.path = [start_city]
def select_next_city(self):
# 根据信息素和启发式规则选择下一个城市
probs = np.zeros(self.n_cities)
for city in range(self.n_cities):
if not self.visited[city]:
probs[city] = (self.pheromone[self.current_city][city] ** self.alpha) * ((1.0 / tsp.distance(self.current_city, city)) ** self.beta)
probs /= probs.sum()
next_city = np.random.choice(range(self.n_cities), p=probs)
self.visited[next_city] = True
self.current_city = next_city
self.path.append(next_city)
def update_pheromone(self, delta_pheromone):
# 更新信息素
for i in range(self.n_cities - 1):
self.pheromone[self.path[i]][self.path[i+1]] += delta_pheromone
self.pheromone[self.path[i+1]][self.path[i]] += delta_pheromone
# 迭代搜索最优解
def ant_colony_optimization(tsp, n_ants, n_iterations, alpha, beta, evaporation_rate):
pheromone = np.ones((tsp.n_cities, tsp.n_cities))
best_path = None
best_distance = float('inf')
for iteration in range(n_iterations):
ants = [Ant(tsp.n_cities, alpha, beta, pheromone, random.randint(0, tsp.n_cities-1)) for i in range(n_ants)]
for ant in ants:
for i in range(tsp.n_cities - 1):
ant.select_next_city()
ant.update_pheromone(1.0 / tsp.distance(ant.path[0], ant.path[-1]))
if tsp.distance(ant.path[0], ant.path[-1]) < best_distance:
best_path = ant.path
best_distance = tsp.distance(ant.path[0], ant.path[-1])
pheromone *= (1.0 - evaporation_rate)
pheromone += evaporation_rate * np.ones((tsp.n_cities, tsp.n_cities)) / best_distance
return best_path, best_distance
# 输出结果
tsp = TSP(10)
best_path, best_distance = ant_colony_optimization(tsp, n_ants=10, n_iterations=100, alpha=1.0, beta=5.0, evaporation_rate=0.5)
print('Best path:', best_path)
print('Best distance:', best_distance)
```
阅读全文