使用c语言实现手写数字识别
时间: 2023-08-20 11:06:09 浏览: 146
手写数字识别可以使用机器学习算法实现,比如使用神经网络。在C语言中,可以使用开源的神经网络库来实现。以下是一个简单的示例代码:
```c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define INPUT_SIZE 784
#define HIDDEN_SIZE 16
#define OUTPUT_SIZE 10
#define LEARNING_RATE 0.1
// sigmoid函数
float sigmoid(float x) {
return 1.0 / (1.0 + exp(-x));
}
// 前向传播
void forward(float *input, float *hidden, float *output, float *w1, float *w2) {
// 计算隐藏层
for (int i = 0; i < HIDDEN_SIZE; i++) {
hidden[i] = 0;
for (int j = 0; j < INPUT_SIZE; j++) {
hidden[i] += input[j] * w1[j * HIDDEN_SIZE + i];
}
hidden[i] = sigmoid(hidden[i]);
}
// 计算输出层
for (int i = 0; i < OUTPUT_SIZE; i++) {
output[i] = 0;
for (int j = 0; j < HIDDEN_SIZE; j++) {
output[i] += hidden[j] * w2[j * OUTPUT_SIZE + i];
}
output[i] = sigmoid(output[i]);
}
}
// 反向传播
void backward(float *input, float *hidden, float *output, float *target, float *w1, float *w2) {
float d_output[OUTPUT_SIZE];
float d_hidden[HIDDEN_SIZE];
// 计算输出层误差
for (int i = 0; i < OUTPUT_SIZE; i++) {
d_output[i] = (target[i] - output[i]) * output[i] * (1 - output[i]);
}
// 计算隐藏层误差
for (int i = 0; i < HIDDEN_SIZE; i++) {
d_hidden[i] = 0;
for (int j = 0; j < OUTPUT_SIZE; j++) {
d_hidden[i] += d_output[j] * w2[i * OUTPUT_SIZE + j];
}
d_hidden[i] *= hidden[i] * (1 - hidden[i]);
}
// 更新权重
for (int i = 0; i < HIDDEN_SIZE; i++) {
for (int j = 0; j < INPUT_SIZE; j++) {
w1[j * HIDDEN_SIZE + i] += LEARNING_RATE * d_hidden[i] * input[j];
}
}
for (int i = 0; i < OUTPUT_SIZE; i++) {
for (int j = 0; j < HIDDEN_SIZE; j++) {
w2[j * OUTPUT_SIZE + i] += LEARNING_RATE * d_output[i] * hidden[j];
}
}
}
int main() {
// 加载数据集
float *data = (float *)malloc(sizeof(float) * 60000 * (INPUT_SIZE + 1));
FILE *file = fopen("mnist_train.csv", "r");
for (int i = 0; i < 60000; i++) {
fscanf(file, "%f,", &data[i * (INPUT_SIZE + 1)]);
for (int j = 0; j < INPUT_SIZE; j++) {
fscanf(file, "%f,", &data[i * (INPUT_SIZE + 1) + j + 1]);
}
}
fclose(file);
// 初始化权重
float *w1 = (float *)malloc(sizeof(float) * INPUT_SIZE * HIDDEN_SIZE);
float *w2 = (float *)malloc(sizeof(float) * HIDDEN_SIZE * OUTPUT_SIZE);
for (int i = 0; i < INPUT_SIZE * HIDDEN_SIZE; i++) {
w1[i] = (float)rand() / RAND_MAX - 0.5;
}
for (int i = 0; i < HIDDEN_SIZE * OUTPUT_SIZE; i++) {
w2[i] = (float)rand() / RAND_MAX - 0.5;
}
// 训练模型
for (int epoch = 0; epoch < 10; epoch++) {
float loss = 0;
for (int i = 0; i < 60000; i++) {
float input[INPUT_SIZE];
float hidden[HIDDEN_SIZE];
float output[OUTPUT_SIZE];
float target[OUTPUT_SIZE] = {0};
target[(int)data[i * (INPUT_SIZE + 1)]] = 1;
for (int j = 0; j < INPUT_SIZE; j++) {
input[j] = data[i * (INPUT_SIZE + 1) + j + 1] / 255.0;
}
forward(input, hidden, output, w1, w2);
backward(input, hidden, output, target, w1, w2);
for (int j = 0; j < OUTPUT_SIZE; j++) {
loss += target[j] * log(output[j]) + (1 - target[j]) * log(1 - output[j]);
}
}
loss /= -60000;
printf("Epoch %d, Loss: %f\n", epoch, loss);
}
// 测试模型
int correct = 0;
file = fopen("mnist_test.csv", "r");
for (int i = 0; i < 10000; i++) {
float input[INPUT_SIZE];
float hidden[HIDDEN_SIZE];
float output[OUTPUT_SIZE];
int label;
fscanf(file, "%d,", &label);
for (int j = 0; j < INPUT_SIZE; j++) {
fscanf(file, "%f,", &input[j]);
input[j] /= 255.0;
}
forward(input, hidden, output, w1, w2);
int predict = 0;
for (int j = 1; j < OUTPUT_SIZE; j++) {
if (output[j] > output[predict]) {
predict = j;
}
}
if (predict == label) {
correct++;
}
}
fclose(file);
printf("Accuracy: %d/%d\n", correct, 10000);
// 释放内存
free(data);
free(w1);
free(w2);
return 0;
}
```
这段代码使用MNIST数据集训练一个简单的神经网络模型,可以实现手写数字识别。具体的实现细节可以参考注释。需要注意的是,这只是一个简单的示例代码,实际上手写数字识别需要更加复杂的模型和更多的数据进行训练。
阅读全文