c语言手写数字识别的代码
时间: 2023-08-12 16:28:01 浏览: 125
手写数字识别的代码比较复杂,需要涉及到图像处理、特征提取、模型建立等多个方面,下面是一个简单的C语言手写数字识别的示例代码,仅供参考:
```c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define IMAGE_SIZE 28
#define INPUT_SIZE (IMAGE_SIZE * IMAGE_SIZE)
#define HIDDEN_SIZE 256
#define OUTPUT_SIZE 10
typedef struct {
float data[INPUT_SIZE];
int label;
} Data;
typedef struct {
float w[INPUT_SIZE][HIDDEN_SIZE];
float b[HIDDEN_SIZE];
} InputLayer;
typedef struct {
float w[HIDDEN_SIZE][OUTPUT_SIZE];
float b[OUTPUT_SIZE];
} OutputLayer;
float sigmoid(float x) {
return 1 / (1 + exp(-x));
}
void read_data(Data *data, char *filename) {
FILE *file = fopen(filename, "r");
if (file == NULL) {
printf("Error: cannot open file %s\n", filename);
exit(1);
}
for (int i = 0; i < INPUT_SIZE; i++) {
fscanf(file, "%f", &data->data[i]);
}
fscanf(file, "%d", &data->label);
fclose(file);
}
void init_input_layer(InputLayer *layer) {
for (int i = 0; i < INPUT_SIZE; i++) {
for (int j = 0; j < HIDDEN_SIZE; j++) {
layer->w[i][j] = rand() / (float)RAND_MAX;
}
}
for (int i = 0; i < HIDDEN_SIZE; i++) {
layer->b[i] = rand() / (float)RAND_MAX;
}
}
void init_output_layer(OutputLayer *layer) {
for (int i = 0; i < HIDDEN_SIZE; i++) {
for (int j = 0; j < OUTPUT_SIZE; j++) {
layer->w[i][j] = rand() / (float)RAND_MAX;
}
}
for (int i = 0; i < OUTPUT_SIZE; i++) {
layer->b[i] = rand() / (float)RAND_MAX;
}
}
int predict(InputLayer *input_layer, OutputLayer *output_layer, float *data) {
float hidden[HIDDEN_SIZE];
for (int i = 0; i < HIDDEN_SIZE; i++) {
hidden[i] = 0;
for (int j = 0; j < INPUT_SIZE; j++) {
hidden[i] += data[j] * input_layer->w[j][i];
}
hidden[i] += input_layer->b[i];
hidden[i] = sigmoid(hidden[i]);
}
float output[OUTPUT_SIZE];
for (int i = 0; i < OUTPUT_SIZE; i++) {
output[i] = 0;
for (int j = 0; j < HIDDEN_SIZE; j++) {
output[i] += hidden[j] * output_layer->w[j][i];
}
output[i] += output_layer->b[i];
}
int label = 0;
float max_prob = -1;
for (int i = 0; i < OUTPUT_SIZE; i++) {
if (output[i] > max_prob) {
max_prob = output[i];
label = i;
}
}
return label;
}
int main() {
InputLayer input_layer;
OutputLayer output_layer;
init_input_layer(&input_layer);
init_output_layer(&output_layer);
Data test_data;
read_data(&test_data, "test.txt");
int label = predict(&input_layer, &output_layer, test_data.data);
printf("Predicted label: %d, true label: %d\n", label, test_data.label);
return 0;
}
```
这个代码中,使用了一个简单的单隐层神经网络进行手写数字识别。首先定义了一个Data结构体来表示输入数据和标签,然后定义了InputLayer和OutputLayer结构体来表示网络的输入层和输出层。sigmoid函数用来进行非线性变换,read_data函数用来读取数据集中的数据和标签,init_input_layer和init_output_layer函数用来初始化网络的参数。predict函数用来进行预测,先计算输入层到隐藏层的变换,然后进行sigmoid激活函数,最后计算隐藏层到输出层的变换,并选择输出值最大的标签作为预测结果。
需要注意的是,这个代码只是一个简单的示例,实际上手写数字识别需要更复杂的网络结构和更大的数据集来获得更好的性能。
阅读全文