使用c语言实现手写数字识别的代码
时间: 2023-08-20 07:06:09 浏览: 96
手写数字识别的代码比较复杂,需要用到神经网络等机器学习算法,以下是一个简单的示例代码,用于演示基本的流程和思路:
```c
// 定义神经网络模型
typedef struct {
int n_input; // 输入层节点数
int n_hidden; // 隐藏层节点数
int n_output; // 输出层节点数
double **w_ih; // 输入层到隐藏层的权重
double **w_ho; // 隐藏层到输出层的权重
double *b_h; // 隐藏层的偏置
double *b_o; // 输出层的偏置
} NeuralNetwork;
// 初始化神经网络
void nn_init(NeuralNetwork *nn, int n_input, int n_hidden, int n_output) {
int i, j;
nn->n_input = n_input;
nn->n_hidden = n_hidden;
nn->n_output = n_output;
nn->w_ih = (double **)malloc(n_input * sizeof(double *));
nn->w_ho = (double **)malloc(n_hidden * sizeof(double *));
for (i = 0; i < n_input; i++) {
nn->w_ih[i] = (double *)malloc(n_hidden * sizeof(double));
for (j = 0; j < n_hidden; j++) {
nn->w_ih[i][j] = (double)rand() / RAND_MAX - 0.5;
}
}
for (i = 0; i < n_hidden; i++) {
nn->w_ho[i] = (double *)malloc(n_output * sizeof(double));
for (j = 0; j < n_output; j++) {
nn->w_ho[i][j] = (double)rand() / RAND_MAX - 0.5;
}
}
nn->b_h = (double *)malloc(n_hidden * sizeof(double));
nn->b_o = (double *)malloc(n_output * sizeof(double));
for (i = 0; i < n_hidden; i++) {
nn->b_h[i] = (double)rand() / RAND_MAX - 0.5;
}
for (i = 0; i < n_output; i++) {
nn->b_o[i] = (double)rand() / RAND_MAX - 0.5;
}
}
// 前向传播
void nn_forward(NeuralNetwork *nn, double *input, double *output) {
int i, j;
double *hidden = (double *)malloc(nn->n_hidden * sizeof(double));
for (i = 0; i < nn->n_hidden; i++) {
hidden[i] = 0.0;
for (j = 0; j < nn->n_input; j++) {
hidden[i] += input[j] * nn->w_ih[j][i];
}
hidden[i] += nn->b_h[i];
hidden[i] = 1.0 / (1.0 + exp(-hidden[i]));
}
for (i = 0; i < nn->n_output; i++) {
output[i] = 0.0;
for (j = 0; j < nn->n_hidden; j++) {
output[i] += hidden[j] * nn->w_ho[j][i];
}
output[i] += nn->b_o[i];
output[i] = 1.0 / (1.0 + exp(-output[i]));
}
free(hidden);
}
// 训练神经网络
void nn_train(NeuralNetwork *nn, double **inputs, double **outputs, int n_samples, int n_epochs, double learning_rate) {
int i, j, k, epoch, sample;
double *input = (double *)malloc(nn->n_input * sizeof(double));
double *output = (double *)malloc(nn->n_output * sizeof(double));
double *error = (double *)malloc(nn->n_output * sizeof(double));
double *delta_o = (double *)malloc(nn->n_output * sizeof(double));
double *delta_h = (double *)malloc(nn->n_hidden * sizeof(double));
double **grad_ih = (double **)malloc(nn->n_input * sizeof(double *));
double **grad_ho = (double **)malloc(nn->n_hidden * sizeof(double *));
for (i = 0; i < nn->n_input; i++) {
grad_ih[i] = (double *)malloc(nn->n_hidden * sizeof(double));
}
for (i = 0; i < nn->n_hidden; i++) {
grad_ho[i] = (double *)malloc(nn->n_output * sizeof(double));
}
for (epoch = 0; epoch < n_epochs; epoch++) {
for (sample = 0; sample < n_samples; sample++) {
for (i = 0; i < nn->n_input; i++) {
input[i] = inputs[sample][i];
}
for (i = 0; i < nn->n_output; i++) {
output[i] = outputs[sample][i];
}
nn_forward(nn, input, output);
for (i = 0; i < nn->n_output; i++) {
error[i] = output[i] - outputs[sample][i];
delta_o[i] = error[i] * output[i] * (1.0 - output[i]);
}
for (i = 0; i < nn->n_hidden; i++) {
delta_h[i] = 0.0;
for (j = 0; j < nn->n_output; j++) {
delta_h[i] += delta_o[j] * nn->w_ho[i][j];
}
delta_h[i] *= nn->b_h[i] * (1.0 - nn->b_h[i]);
}
for (i = 0; i < nn->n_input; i++) {
for (j = 0; j < nn->n_hidden; j++) {
grad_ih[i][j] = input[i] * delta_h[j];
nn->w_ih[i][j] -= learning_rate * grad_ih[i][j];
}
}
for (i = 0; i < nn->n_hidden; i++) {
for (j = 0; j < nn->n_output; j++) {
grad_ho[i][j] = nn->b_h[i] * delta_o[j];
nn->w_ho[i][j] -= learning_rate * grad_ho[i][j];
}
}
for (i = 0; i < nn->n_hidden; i++) {
nn->b_h[i] -= learning_rate * delta_h[i];
}
for (i = 0; i < nn->n_output; i++) {
nn->b_o[i] -= learning_rate * delta_o[i];
}
}
}
free(input);
free(output);
free(error);
free(delta_o);
free(delta_h);
for (i = 0; i < nn->n_input; i++) {
free(grad_ih[i]);
}
for (i = 0; i < nn->n_hidden; i++) {
free(grad_ho[i]);
}
free(grad_ih);
free(grad_ho);
}
// 测试神经网络
void nn_test(NeuralNetwork *nn, double **inputs, double **outputs, int n_samples) {
int i, j, correct = 0;
double *input = (double *)malloc(nn->n_input * sizeof(double));
double *output = (double *)malloc(nn->n_output * sizeof(double));
for (i = 0; i < n_samples; i++) {
for (j = 0; j < nn->n_input; j++) {
input[j] = inputs[i][j];
}
nn_forward(nn, input, output);
int prediction = -1;
double max_output = -1.0;
for (j = 0; j < nn->n_output; j++) {
if (output[j] > max_output) {
prediction = j;
max_output = output[j];
}
}
if (prediction == -1) {
printf("Error: Prediction failed!\n");
return;
}
if (outputs[i][prediction] == 1.0) {
correct++;
}
}
printf("Accuracy: %.2f%%\n", (double)correct / n_samples * 100.0);
free(input);
free(output);
}
```
这段代码实现了一个简单的三层神经网络:输入层、隐藏层和输出层,使用反向传播算法进行训练和优化。具体的流程和算法细节可以参考代码中的注释。需要注意的是,这段代码仅作为示例,实际的手写数字识别任务需要更加复杂和精细的算法和实现。
阅读全文