yolov3训练自己的数据集 linux
时间: 2023-09-02 21:06:06 浏览: 125
Yolov8基本介绍+训练自己数据集
要在Linux上使用YOLOv3训练自己的数据集,你可以按照以下步骤进行操作:
1. 下载YOLOv3的预训练模型。使用以下命令下载预训练权重文件:
```shell
wget https://pjreddie.com/media/files/yolov3.weights
```
2. 标注数据。你需要为你的数据集标注bounding box,并生成相应的label文件。可以使用一些标注工具来完成这个任务。
3. 制作自己的数据集。在darknet目录下创建一个VOCdevkit文件夹,并将刚才标注好的数据集(包括图像和对应的label文件)拷贝到该文件夹下。
4. 下载并编译源代码。使用以下命令下载YOLOv3的源代码:
```shell
git clone https://github.com/pjreddie/darknet.git
cd darknet
make
```
5. 修改配置文件。在darknet/cfg目录下,你需要修改yolov3.cfg文件来适应你的数据集。主要修改的地方包括:设置`batch`和`subdivisions`为适当的数值(这取决于你的显卡内存),设置`classes`为你数据集中的类别数目,设置`filters`为`(classes + 5)* 3`。
6. 转换label文件格式。通过以下命令来转换label文件格式:
```shell
wget https://pjreddie.com/media/files/voc_label.py
python voc_label.py
```
7. 开始训练。使用以下命令开始训练你的数据集:
```shell
./darknet detector train cfg/voc.data cfg/yolov3.cfg yolov3.weights
```
以上是在Linux上使用YOLOv3训练自己的数据集的步骤。请注意,这只是基本步骤,具体操作可能会因为你的数据集和环境的不同而有所差异。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* *3* [超详细教程:YOLO_V3(yolov3)训练自己的数据](https://blog.csdn.net/qq_21578849/article/details/84980298)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"]
[ .reference_list ]
阅读全文