详细介绍一下这段代码,xx = np.linspace(xlim[0], xlim[1], 30) yy = np.linspace(ylim[0], ylim[1], 30) YY, XX = np.meshgrid(yy, xx) xy = np.vstack([XX.ravel(), YY.ravel()]).T Z = clf.decision_function(xy).reshape(XX.shape) # 绘制决策边界和边界 ax.contour(XX, YY, Z, colors='k', levels=[-1, 0, 1], alpha=0.5, linestyles=['--', '-', '--']) ax.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=100, linewidth=1, facecolors='none', edgecolors='k') plt.show()
时间: 2024-04-23 22:22:39 浏览: 139
这段代码主要用于绘制SVM算法的决策边界和支持向量。
xx = np.linspace(xlim[0], xlim[1], 30):这段代码生成30个在xmin到xmax之间的等间距数值,用于生成网格点矩阵。
yy = np.linspace(ylim[0], ylim[1], 30):这段代码生成30个在ymin到ymax之间的等间距数值,用于生成网格点矩阵。
YY, XX = np.meshgrid(yy, xx):这段代码使用meshgrid函数生成网格点矩阵。
xy = np.vstack([XX.ravel(), YY.ravel()]).T:这段代码将网格点矩阵展开成一维数组,并转置得到每个网格点的坐标。
Z = clf.decision_function(xy).reshape(XX.shape):这段代码使用训练好的SVM分类器对网格点进行预测,并将预测结果重塑为与网格点矩阵相同的形状。
ax.contour(XX, YY, Z, colors='k', levels=[-1, 0, 1], alpha=0.5, linestyles=['--', '-', '--']):这段代码使用contour函数绘制决策边界和边界。
ax.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=100, linewidth=1, facecolors='none', edgecolors='k'):这段代码使用scatter函数绘制支持向量。
plt.show():这段代码显示绘制的图形。
这段代码的主要作用是绘制SVM算法的决策边界和支持向量,其中meshgrid函数用于生成网格点矩阵,decision_function函数用于对网格点进行预测,contour函数用于绘制决策边界和边界,scatter函数用于绘制支持向量。
阅读全文