改写以下代码,使数据中增加随机噪声: dbnParams.numLayers = 5; dbnParams.hidden_sizes = 3; num_class = 4; dbn.sizes = 100,100,100; opts.numepochs = 10;opts.batchsize = 27;opts.momentum = 0.1; opts.alpha = 0.01; opts.plot = 1; dbn = dbnsetup(dbn, trainXn, opts);%初始化RBM的参数 dbn = dbntrain(dbn, trainXn, opts); % 将DBN展开到神经网络,建立包含输出层的神经网络 nn = dbnunfoldtonn(dbn,size(trainY,2));%输出类别数 nn.activation_function = 'tanh_opt'; %激活函数'sigm' (sigmoid) or 'tanh_opt' (optimal tanh). nn.learningRate = 0.1; nn.dropoutFraction = 0.; opts.numepochs = 200; . opts.batchsize = 1; nn = nntrain(nn, [trainXn;testXn], [trainY;testY], opts); nn.output = ['softmax'];
时间: 2023-10-11 07:13:00 浏览: 55
matlab神经网络和程序(3).ppt
以下是修改后的代码,增加了高斯噪声:
```
dbnParams.numLayers = 5;
dbnParams.hidden_sizes = 3;
num_class = 4;
dbn.sizes = 100,100,100;
opts.numepochs = 10;
opts.batchsize = 27;
opts.momentum = 0.1;
opts.alpha = 0.01;
opts.plot = 1;
% 在训练数据中增加高斯噪声
noise = randn(size(trainXn)) * 0.1;
trainXn_noisy = trainXn + noise;
dbn = dbnsetup(dbn, trainXn_noisy, opts); % 初始化RBM的参数
dbn = dbntrain(dbn, trainXn_noisy, opts); % 将DBN展开到神经网络,建立包含输出层的神经网络
nn = dbnunfoldtonn(dbn,size(trainY,2)); % 输出类别数
nn.activation_function = 'tanh_opt'; % 激活函数'sigm' (sigmoid) or 'tanh_opt' (optimal tanh).
nn.learningRate = 0.1;
nn.dropoutFraction = 0.;
opts.numepochs = 200;
opts.batchsize = 1;
nn = nntrain(nn, [trainXn_noisy;testXn], [trainY;testY], opts);
nn.output = ['softmax'];
```
在这个例子中,我使用 randn 函数生成均值为 0,标准差为 0.1 的高斯噪声,并将其加到训练数据 trainXn 中,得到 trainXn_noisy。然后,我使用 trainXn_noisy 来训练 DBN 和神经网络。这样,训练出来的模型将更加鲁棒,能够更好地处理噪声数据。
阅读全文