BP神经网络源码解析与学习
需积分: 9 7 浏览量
更新于2024-09-09
收藏 34KB DOC 举报
"该资源提供了一个BP神经网络的源代码示例,旨在帮助学习者理解并运用BP神经网络。"
BP神经网络(Backpropagation Neural Network)是一种在机器学习领域广泛应用的多层前馈神经网络,它通过反向传播算法调整权重以优化网络性能。在给出的代码中,我们可以看到BP神经网络的构建过程,包括设置网络结构、连接方式、输入范围、神经元数量以及各层的激活函数。
首先,`net=network;` 创建了一个网络对象。接着,`net.numInputs` 和 `net.numLayers` 分别定义了网络的输入个数和层数。在这个例子中,网络有一个输入,三个隐藏层和一个输出层。
`net.biasConnect` 和 `net.inputConnect` 定义了偏置单元的连接,`net.layerConnect` 定义了层与层之间的连接。`net.outputConnect` 和 `net.targetConnect` 分别指定了输出层与目标层的连接,这在训练过程中用于计算误差。
然后,`net.inputs{1}.range` 设置了输入的范围,这里为`[-22 -11 -22 -11 -11]`,这可能是针对特定问题的数据范围进行设定的。
接下来,`net.layers{i}.size` 设定了第i层的神经元数量,例如,第一层有4个神经元,第二层有3个,第三层有1个。`net.layers{i}.transferFcn` 指定了各层的激活函数,如第一层和第三层使用线性函数('purelin'),第二层使用双曲正切函数('tansig')。激活函数决定了神经元的输出如何基于其输入和权重来计算。
`net.layers{i}.initFcn` 定义了初始化权重的方法,这里的'initnw'可能表示使用某种随机分布初始化权重。
最后,`net.layers{i}.weight` 和 `net.layers{i}.bias` 通常用于存储网络的权重和偏置值,但在这个代码片段中没有显示具体的设置。实际的训练过程会涉及这些权重的更新,以最小化预测输出与目标输出之间的误差。
这个BP神经网络代码实例展示了如何在MATLAB环境中构建一个多层神经网络,并设置了网络的基本参数,包括结构、连接方式、激活函数和权重初始化。对于初学者,这是一个很好的起点,可以帮助他们理解和实现自己的BP神经网络模型。
101 浏览量
2630 浏览量
198 浏览量
185 浏览量
137 浏览量
2023-11-02 上传
108 浏览量
129 浏览量
119 浏览量
sinat_33221341
- 粉丝: 0
- 资源: 3
最新资源
- WebLogic的安装与使用.doc
- 语义万维网、RDF模型理论及其推理机制
- struts2标签库
- ArcGIS Desktop轻松入门.pdf
- ArcGIS Server轻松入门.pdf
- 以太网控制芯片RTL8201BL中文版
- c语言编程要点(朝清晰版)
- 语言中srand随机函数的用法
- LPC2292_2294(ARM7系列)中文版
- 很不错的网络工程师学习笔记
- 2009全球ITSM趋势分析
- Backup Exec System Recovery白皮书
- NS中文手册精美版(唯一版本,请勿乱转)
- 计算机等级考试四级复习资料
- 无线破解-MAC绑定IP,DHCP关闭,MAC过滤解决方案初探.pdf
- perl语言入门(第四版).pdf