改写以下代码,使其具有dropout功能: dbnParams.numLayers = 5; dbnParams.hidden_sizes = 3; num_class = 4; dbn.sizes = 100,100,100; opts.numepochs = 10;opts.batchsize = 27;opts.momentum = 0.1; opts.alpha = 0.01; opts.plot = 1; dbn = dbnsetup(dbn, trainXn, opts);%初始化RBM的参数 dbn = dbntrain(dbn, trainXn, opts); % 将DBN展开到神经网络,建立包含输出层的神经网络 nn = dbnunfoldtonn(dbn,size(trainY,2));%输出类别数 nn.activation_function = 'tanh_opt'; %激活函数'sigm' (sigmoid) or 'tanh_opt' (optimal tanh). nn.learningRate = 0.1; nn.dropoutFraction = 0.; opts.numepochs = 200; . opts.batchsize = 1; nn = nntrain(nn, [trainXn;testXn], [trainY;testY], opts); nn.output = ['softmax'];
时间: 2023-10-16 09:10:37 浏览: 99
机器学习——Dropout,python实现
4星 · 用户满意度95%
dbnParams.numLayers = 5;
dbnParams.hidden_sizes = 3;
num_class = 4;
dbn.sizes = 100,100,100;
opts.numepochs = 10;
opts.batchsize = 27;
opts.momentum = 0.1;
opts.alpha = 0.01;
opts.plot = 1;
dbn = dbnsetup(dbn, trainXn, opts);%初始化RBM的参数
dbn = dbntrain(dbn, trainXn, opts); % 将DBN展开到神经网络,建立包含输出层的神经网络
nn = dbnunfoldtonn(dbn,size(trainY,2));%输出类别数
nn.activation_function = 'tanh_opt'; %激活函数'sigm' (sigmoid) or 'tanh_opt' (optimal tanh).
nn.learningRate = 0.1;
nn.dropoutFraction = 0.5; % 设置dropout的比例为0.5
opts.numepochs = 200;
opts.batchsize = 1;
nn = nntrain(nn, [trainXn;testXn], [trainY;testY], opts);
nn.output = ['softmax'];
阅读全文