class Droupt: def __init__(self,dropout_ratio=0.5): self.dropout_ratio=dropout_ratio self.mask=None def forward(self,x,train_flg=True): if train_flg: self.mask=np.random.rand(*x.shape)>self.dropout_ratio return x*self.mask else: return x*(1.0-self.dropout_ratio) def backward(self,dout): return dout*self.mask
时间: 2024-04-13 10:27:59 浏览: 147
这个类是一个实现了dropout的神经网络层。在初始化时,可以指定dropout的比例,默认为0.5。在前向传播过程中,如果处于训练模式,会生成一个与输入x形状一致的掩码mask,其中元素值大于dropout比例的位置为True,小于等于dropout比例的位置为False。最后将输入x与掩码相乘,实现了随机丢弃一部分神经元的功能。如果处于测试模式,直接将输入x乘以(1.0 - dropout比例)即可。在反向传播过程中,将输出dout与掩码相乘,将被丢弃的神经元对应的梯度置为0。
相关问题
class DoubleFastRCNNOutputLayers(nn.Module): def __init__( self, cfg, input_size, num_classes, cls_agnostic_bbox_reg, box_dim=4 ): super(DoubleFastRCNNOutputLayers, self).__init__() if not isinstance(input_size, int): input_size = np.prod(input_size) self.cls_score = nn.Linear(input_size, num_classes + 1) num_bbox_reg_classes = 1 if cls_agnostic_bbox_reg else num_classes self.bbox_pred = nn.Linear(input_size, num_bbox_reg_classes * box_dim) nn.init.normal_(self.cls_score.weight, std=0.01) nn.init.normal_(self.bbox_pred.weight, std=0.001) for l in [self.cls_score, self.bbox_pred]: nn.init.constant_(l.bias, 0) self._do_cls_dropout = cfg.MODEL.ROI_HEADS.CLS_DROPOUT self._dropout_ratio = cfg.MODEL.ROI_HEADS.DROPOUT_RATIO def forward(self, x_s, x_l): if x_s.dim() > 2: x_s = torch.flatten(x_s, start_dim=1) if x_l.dim() > 2: x_l = torch.flatten(x_l, start_dim=1) proposal_deltas = self.bbox_pred(x_l) if self._do_cls_dropout: x_s = F.dropout(x_s, self._dropout_ratio, training=self.training) scores = self.cls_score(x_s) return scores, proposal_deltas
这段代码是一个双输入的Fast R-CNN输出层的实现,其中包括一个分类得分层和一个边界框回归层。它接受两个输入x_s和x_l,分别代表短边和长边的特征。在前向传播时,它首先对输入进行扁平化处理,然后通过bbox_pred层获得边界框预测值,通过cls_score层获得分类得分。在进行分类得分的计算时,可以进行dropout操作来防止过拟合。最终,返回分类得分和边界框预测值。
class Dropout: """ http://arxiv.org/abs/1207.0580 """ def __init__(self, dropout_ratio=0.5): self.dropout_ratio = dropout_ratio self.mask = None def forward(self, x, train_flg=True): if train_flg: self.mask = np.random.rand(*x.shape) > self.dropout_ratio return x * self.mask else: return x * (1.0 - self.dropout_ratio) def backward(self, dout): return dout * self.mask
这是一个Dropout层的类实现。Dropout层是一种正则化技术,可以随机地将该层的一些神经元输出设置为0,从而可以减少模型的过拟合情况。在类的初始化函数中,初始化该层的dropout_ratio参数,即该层的神经元输出设置为0的概率。在前向传播函数中,如果是训练模式,就随机生成一个与输入x相同形状的掩码mask,其中元素值为True的概率为dropout_ratio,然后将输入x与掩码mask相乘得到该层的输出,否则如果是测试模式,就将输入x乘以(1.0 - dropout_ratio)得到该层的输出。在反向传播函数中,将输入的梯度dout乘以掩码mask得到该层的输出梯度。最终返回该层的输出梯度。
阅读全文