ReqSDR.B_Accuracy = ((-60>>2) & 0xC0); cppcheck

时间: 2024-05-11 19:18:22 浏览: 20
这行代码存在两个问题: 1. 变量名中的"."可能会被解释为结构体成员访问符,建议使用"->"代替。 2. 对于(-60>>2),因为-60是负数,右移操作会在左侧补1,导致结果为-15,而不是期望中的-15。建议使用无符号整型进行位运算,即将-60强制转换为unsigned int类型,再进行位运算。同时,对于0xC0的位运算,建议使用八进制表示方式,即0x\60,避免混淆。 修改后的代码如下: ``` ReqSDR->B_Accuracy = ((unsigned int)(-60) >> 2) & 0x30; ``` 其中,0x30为二进制00110000,表示将低6位清零。
相关问题

def __init__(self, probe_interval=2000, accuracy_delta=0.001, reduction_factor=0.75, min_lr=1e-5): super().__init__() self.probe_interval = probe_interval self.accuracy_delta = accuracy_delta self.reduction_factor = reduction_factor self.min_lr = min_lr self.batch_num = 0 self.last_accuracy = 0.0

这是一个 Python 类的初始化函数,其中包含了一些参数的设置,如 probe_interval、accuracy_delta、reduction_factor 和 min_lr 等。这些参数可以用来控制学习率的调整,以提高模型的准确性。同时,该函数还初始化了一些变量,如 batch_num 和 last_accuracy,用于记录训练过程中的批次数和最后一次的准确率。

请逐句地详细解读以下代码块 def train_model(self): self.vectorizer = TfidfVectorizer() self.X_train_tfidf = self.vectorizer.fit_transform(self.X_train) self.clf = MultinomialNB() self.clf.fit(self.X_train_tfidf, self.y_train) self.train_accuracy = accuracy_score(self.y_train, self.clf.predict(self.X_train_tfidf))

这段代码的功能是用朴素贝叶斯分类器对给定的训练集进行训练,并计算训练准确度。具体解释如下: 1. `self.vectorizer = TfidfVectorizer()`: 初始化一个 TfidfVectorizer 对象,用于将文本数据转换为词频-逆文档频率矩阵。 2. `self.X_train_tfidf = self.vectorizer.fit_transform(self.X_train)`: 将训练集文本数据 X_train 转换为词频-逆文档频率矩阵,存储在 self.X_train_tfidf 中。这个矩阵的每一行表示一个文本,每一列表示一个单词。矩阵中的每个元素表示该单词在该文本中出现的频率,乘以逆文档频率后得到的值。 3. `self.clf = MultinomialNB()`: 初始化一个朴素贝叶斯分类器对象 MultinomialNB()。 4. `self.clf.fit(self.X_train_tfidf, self.y_train)`: 用训练集的词频-逆文档频率矩阵 self.X_train_tfidf 和标签数据 self.y_train 对分类器进行训练。 5. `self.train_accuracy = accuracy_score(self.y_train, self.clf.predict(self.X_train_tfidf))`: 计算训练准确度,即用训练集对分类器进行预测并计算准确率。其中,`self.clf.predict(self.X_train_tfidf)` 返回分类器对训练集的预测结果,`accuracy_score(self.y_train, ...)` 计算分类器对训练集的预测准确率。

相关推荐

import numpy as np from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt # 加载 iris 数据 iris = load_iris() # 只选取两个特征和两个类别进行二分类 X = iris.data[(iris.target==0)|(iris.target==1), :2] y = iris.target[(iris.target==0)|(iris.target==1)] # 将标签转化为 0 和 1 y[y==0] = -1 # 将数据集分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 实现逻辑回归算法 class LogisticRegression: def __init__(self, lr=0.01, num_iter=100000, fit_intercept=True, verbose=False): self.lr = lr self.num_iter = num_iter self.fit_intercept = fit_intercept self.verbose = verbose def __add_intercept(self, X): intercept = np.ones((X.shape[0], 1)) return np.concatenate((intercept, X), axis=1) def __sigmoid(self, z): return 1 / (1 + np.exp(-z)) def __loss(self, h, y): return (-y * np.log(h) - (1 - y) * np.log(1 - h)).mean() def fit(self, X, y): if self.fit_intercept: X = self.__add_intercept(X) # 初始化参数 self.theta = np.zeros(X.shape[1]) for i in range(self.num_iter): # 计算梯度 z = np.dot(X, self.theta) h = self.__sigmoid(z) gradient = np.dot(X.T, (h - y)) / y.size # 更新参数 self.theta -= self.lr * gradient # 打印损失函数 if self.verbose and i % 10000 == 0: z = np.dot(X, self.theta) h = self.__sigmoid(z) loss = self.__loss(h, y) print(f"Loss: {loss} \t") def predict_prob(self, X): if self.fit_intercept: X = self.__add_intercept(X) return self.__sigmoid(np.dot(X, self.theta)) def predict(self, X, threshold=0.5): return self.predict_prob(X) >= threshold # 训练模型 model = LogisticRegressio

import numpy as np import tensorflow as tf from tensorflow import keras import matplotlib.pyplot as plt ## Let us define a plt function for simplicity def plt_loss(x,training_metric,testing_metric,ax,colors = ['b']): ax.plot(x,training_metric,'b',label = 'Train') ax.plot(x,testing_metric,'k',label = 'Test') ax.set_xlabel('Epochs') ax.set_ylabel('Accuarcy')# ax.set_ylabel('Categorical Crossentropy Loss') plt.legend() plt.grid() plt.show() tf.keras.utils.set_random_seed(1) ## We import the Minist Dataset using Keras.datasets (train_data, train_labels), (test_data, test_labels) = keras.datasets.mnist.load_data() ## We first vectorize the image (28*28) into a vector (784) train_data = train_data.reshape(train_data.shape[0],train_data.shape[1]train_data.shape[2]) # 60000784 test_data = test_data.reshape(test_data.shape[0],test_data.shape[1]test_data.shape[2]) # 10000784 ## We next change label number to a 10 dimensional vector, e.g., 1->[0,1,0,0,0,0,0,0,0,0] train_labels = keras.utils.to_categorical(train_labels,10) test_labels = keras.utils.to_categorical(test_labels,10) ## start to build a MLP model N_batch_size = 5000 N_epochs = 100 lr = 0.01 ## we build a three layer model, 784 -> 64 -> 10 MLP_4 = keras.models.Sequential([ keras.layers.Dense(128, input_shape=(784,),activation='relu'), keras.layers.Dense(64,activation='relu'), keras.layers.Dense(10,activation='softmax') ]) MLP_4.compile( optimizer=keras.optimizers.Adam(lr), loss= 'categorical_crossentropy', metrics = ['accuracy'] ) History = MLP_4.fit(train_data[:10000],train_labels[:10000], batch_size = N_batch_size, epochs = N_epochs,validation_data=(test_data,test_labels), shuffle=False) train_acc = History.history['accuracy'] test_acc = History.history['val_accuracy']在该模型的每一层(包括输出层)都分别加入L1,L2正则项训练,分别汇报测试数据准确率

import numpy as np import tensorflow as tf from tensorflow import keras import matplotlib.pyplot as plt ## Let us define a plt function for simplicity def plt_loss(x,training_metric,testing_metric,ax,colors = ['b']): ax.plot(x,training_metric,'b',label = 'Train') ax.plot(x,testing_metric,'k',label = 'Test') ax.set_xlabel('Epochs') ax.set_ylabel('Accuarcy')# ax.set_ylabel('Categorical Crossentropy Loss') plt.legend() plt.grid() plt.show() tf.keras.utils.set_random_seed(1) ## We import the Minist Dataset using Keras.datasets (train_data, train_labels), (test_data, test_labels) = keras.datasets.mnist.load_data() ## We first vectorize the image (28*28) into a vector (784) train_data = train_data.reshape(train_data.shape[0],train_data.shape[1]*train_data.shape[2]) # 60000*784 test_data = test_data.reshape(test_data.shape[0],test_data.shape[1]*test_data.shape[2]) # 10000*784 ## We next change label number to a 10 dimensional vector, e.g., 1->[0,1,0,0,0,0,0,0,0,0] train_labels = keras.utils.to_categorical(train_labels,10) test_labels = keras.utils.to_categorical(test_labels,10) ## start to build a MLP model N_batch_size = 5000 N_epochs = 100 lr = 0.01 # ## we build a three layer model, 784 -> 64 -> 10 MLP_3 = keras.models.Sequential([ keras.layers.Dense(64, input_shape=(784,),activation='relu'), keras.layers.Dense(10,activation='softmax') ]) MLP_3.compile( optimizer=keras.optimizers.Adam(lr), loss= 'categorical_crossentropy', metrics = ['accuracy'] ) History = MLP_3.fit(train_data,train_labels, batch_size = N_batch_size, epochs = N_epochs,validation_data=(test_data,test_labels), shuffle=False) train_acc = History.history['accuracy'] test_acc = History.history['val_accuracy']模仿此段代码,写一个双隐层感知器(输入层784,第一隐层128,第二隐层64,输出层10)

ImportError Traceback (most recent call last) <ipython-input-3-b25a42d5a266> in <module>() 8 from sklearn.preprocessing import StandardScaler,PowerTransformer 9 from sklearn.linear_model import LinearRegression,LassoCV,LogisticRegression ---> 10 from sklearn.ensemble import RandomForestClassifier,RandomForestRegressor 11 from sklearn.model_selection import KFold,train_test_split,StratifiedKFold,GridSearchCV,cross_val_score 12 from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score,accuracy_score, precision_score,recall_score, roc_auc_score ~\Anaconda3\lib\site-packages\sklearn\ensemble\__init__.py in <module>() 3 classification, regression and anomaly detection. 4 """ ----> 5 from ._base import BaseEnsemble 6 from ._forest import RandomForestClassifier 7 from ._forest import RandomForestRegressor ~\Anaconda3\lib\site-packages\sklearn\ensemble\_base.py in <module>() 16 from ..base import BaseEstimator 17 from ..base import MetaEstimatorMixin ---> 18 from ..tree import DecisionTreeRegressor, ExtraTreeRegressor 19 from ..utils import Bunch, _print_elapsed_time 20 from ..utils import check_random_state ~\Anaconda3\lib\site-packages\sklearn\tree\__init__.py in <module>() 4 """ 5 ----> 6 from ._classes import BaseDecisionTree 7 from ._classes import DecisionTreeClassifier 8 from ._classes import DecisionTreeRegressor ~\Anaconda3\lib\site-packages\sklearn\tree\_classes.py in <module>() 39 from ..utils.validation import check_is_fitted 40 ---> 41 from ._criterion import Criterion 42 from ._splitter import Splitter 43 from ._tree import DepthFirstTreeBuilder sklearn\tree\_criterion.pyx in init sklearn.tree._criterion() ImportError: DLL load failed: 找不到指定的模块。 怎么改

import numpy as np import tensorflow as tf from tensorflow import keras import matplotlib.pyplot as plt Let us define a plt function for simplicity def plt_loss(x,training_metric,testing_metric,ax,colors = ['b']): ax.plot(x,training_metric,'b',label = 'Train') ax.plot(x,testing_metric,'k',label = 'Test') ax.set_xlabel('Epochs') ax.set_ylabel('Accuracy') plt.legend() plt.grid() plt.show() tf.keras.utils.set_random_seed(1) We import the Minist Dataset using Keras.datasets (train_data, train_labels), (test_data, test_labels) = keras.datasets.mnist.load_data() We first vectorize the image (28*28) into a vector (784) train_data = train_data.reshape(train_data.shape[0],train_data.shape[1]train_data.shape[2]) # 60000784 test_data = test_data.reshape(test_data.shape[0],test_data.shape[1]test_data.shape[2]) # 10000784 We next change label number to a 10 dimensional vector, e.g., 1-> train_labels = keras.utils.to_categorical(train_labels,10) test_labels = keras.utils.to_categorical(test_labels,10) start to build a MLP model N_batch_size = 5000 N_epochs = 100 lr = 0.01 we build a three layer model, 784 -> 64 -> 10 MLP_3 = keras.models.Sequential([ keras.layers.Dense(128, input_shape=(784,),activation='relu'), keras.layers.Dense(64, activation='relu'), keras.layers.Dense(10,activation='softmax') ]) MLP_3.compile( optimizer=keras.optimizers.Adam(lr), loss= 'categorical_crossentropy', metrics = ['accuracy'] ) History = MLP_3.fit(train_data,train_labels, batch_size = N_batch_size, epochs = N_epochs,validation_data=(test_data,test_labels), shuffle=False) train_acc = History.history['accuracy'] test_acc = History.history对于该模型,使用不同数量的训练数据(5000,10000,15000,…,60000,公差=5000的等差数列),绘制训练集和测试集准确率(纵轴)关于训练数据大小(横轴)的曲线

最新推荐

recommend-type

解决keras,val_categorical_accuracy:,0.0000e+00问题

然而,在实践中,我们可能会遇到一些问题,例如在训练过程中遇到`val_categorical_accuracy: 0.0000e+00`的情况。这通常意味着模型在验证集上的分类精度为零,即模型无法正确预测任何验证样本的类别。 问题描述: ...
recommend-type

解决Tensorflow2.0 tf.keras.Model.load_weights() 报错处理问题

model = load_model("model.h5", custom_objects={'top_2_accuracy': top_2_accuracy}) ``` 在这里,我们导入了`top_k_categorical_accuracy`并定义了`top_2_accuracy`函数,然后在`load_model`时将其作为参数传入,...
recommend-type

IEEE Std 802.15.4z-2020 IEEE Standard(原版非图片).pdf

IEEE Std 802.15.4z-2020 IEEE Standard for Low Rate Wireless Networks Amendment 1: Enhanced Ultra Wideband (UWB) Physical ...improvements to increase the integrity and accuracy of ranging measurements.
recommend-type

电力电子系统建模与控制入门

"该资源是关于电力电子系统建模及控制的课程介绍,包含了课程的基本信息、教材与参考书目,以及课程的主要内容和学习要求。" 电力电子系统建模及控制是电力工程领域的一个重要分支,涉及到多学科的交叉应用,如功率变换技术、电工电子技术和自动控制理论。这门课程主要讲解电力电子系统的动态模型建立方法和控制系统设计,旨在培养学生的建模和控制能力。 课程安排在每周二的第1、2节课,上课地点位于东12教401室。教材采用了徐德鸿编著的《电力电子系统建模及控制》,同时推荐了几本参考书,包括朱桂萍的《电力电子电路的计算机仿真》、Jai P. Agrawal的《Powerelectronicsystems theory and design》以及Robert W. Erickson的《Fundamentals of Power Electronics》。 课程内容涵盖了从绪论到具体电力电子变换器的建模与控制,如DC/DC变换器的动态建模、电流断续模式下的建模、电流峰值控制,以及反馈控制设计。还包括三相功率变换器的动态模型、空间矢量调制技术、逆变器的建模与控制,以及DC/DC和逆变器并联系统的动态模型和均流控制。学习这门课程的学生被要求事先预习,并尝试对书本内容进行仿真模拟,以加深理解。 电力电子技术在20世纪的众多科技成果中扮演了关键角色,广泛应用于各个领域,如电气化、汽车、通信、国防等。课程通过列举各种电力电子装置的应用实例,如直流开关电源、逆变电源、静止无功补偿装置等,强调了其在有功电源、无功电源和传动装置中的重要地位,进一步凸显了电力电子系统建模与控制技术的实用性。 学习这门课程,学生将深入理解电力电子系统的内部工作机制,掌握动态模型建立的方法,以及如何设计有效的控制系统,为实际工程应用打下坚实基础。通过仿真练习,学生可以增强解决实际问题的能力,从而在未来的工程实践中更好地应用电力电子技术。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

图像写入的陷阱:imwrite函数的潜在风险和规避策略,规避图像写入风险,保障数据安全

![图像写入的陷阱:imwrite函数的潜在风险和规避策略,规避图像写入风险,保障数据安全](https://static-aliyun-doc.oss-accelerate.aliyuncs.com/assets/img/zh-CN/2275688951/p86862.png) # 1. 图像写入的基本原理与陷阱 图像写入是计算机视觉和图像处理中一项基本操作,它将图像数据从内存保存到文件中。图像写入过程涉及将图像数据转换为特定文件格式,并将其写入磁盘。 在图像写入过程中,存在一些潜在陷阱,可能会导致写入失败或图像质量下降。这些陷阱包括: - **数据类型不匹配:**图像数据可能与目标文
recommend-type

protobuf-5.27.2 交叉编译

protobuf(Protocol Buffers)是一个由Google开发的轻量级、高效的序列化数据格式,用于在各种语言之间传输结构化的数据。版本5.27.2是一个较新的稳定版本,支持跨平台编译,使得可以在不同的架构和操作系统上构建和使用protobuf库。 交叉编译是指在一个平台上(通常为开发机)编译生成目标平台的可执行文件或库。对于protobuf的交叉编译,通常需要按照以下步骤操作: 1. 安装必要的工具:在源码目录下,你需要安装适合你的目标平台的C++编译器和相关工具链。 2. 配置Makefile或CMakeLists.txt:在protobuf的源码目录中,通常有一个CMa
recommend-type

SQL数据库基础入门:发展历程与关键概念

本文档深入介绍了SQL数据库的基础知识,首先从数据库的定义出发,强调其作为数据管理工具的重要性,减轻了开发人员的数据处理负担。数据库的核心概念是"万物皆关系",即使在面向对象编程中也有明显区分。文档讲述了数据库的发展历程,从早期的层次化和网状数据库到关系型数据库的兴起,如Oracle的里程碑式论文和拉里·埃里森推动的关系数据库商业化。Oracle的成功带动了全球范围内的数据库竞争,最终催生了SQL这一通用的数据库操作语言,统一了标准,使得关系型数据库成为主流。 接着,文档详细解释了数据库系统的构成,包括数据库本身(存储相关数据的集合)、数据库管理系统(DBMS,负责数据管理和操作的软件),以及数据库管理员(DBA,负责维护和管理整个系统)和用户应用程序(如Microsoft的SSMS)。这些组成部分协同工作,确保数据的有效管理和高效处理。 数据库系统的基本要求包括数据的独立性,即数据和程序的解耦,有助于快速开发和降低成本;减少冗余数据,提高数据共享性,以提高效率;以及系统的稳定性和安全性。学习SQL时,要注意不同数据库软件可能存在的差异,但核心语言SQL的学习是通用的,后续再根据具体产品学习特异性。 本文档提供了一个全面的框架,涵盖了SQL数据库从基础概念、发展历程、系统架构到基本要求的方方面面,对于初学者和数据库管理员来说是一份宝贵的参考资料。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

图像写入的最佳实践:imwrite函数与其他图像写入工具的比较,打造高效图像写入流程

![图像写入的最佳实践:imwrite函数与其他图像写入工具的比较,打造高效图像写入流程](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-ce618398b464903a8c60e0b57b51ab77.png) # 1. 图像写入概述 图像写入是将数字图像数据存储到文件或内存中的过程。它在图像处理、计算机视觉和数据科学等领域中至关重要。图像写入工具有多种,每种工具都有其独特的优点和缺点。了解这些工具的特性和性能差异对于选择最适合特定应用的工具至关重要。 # 2. 图像写入工具比较 ### 2.1