def __init__(self, d_model, dropout=0.1, max_len=5000)是什么意思
时间: 2024-05-17 09:13:15 浏览: 81
这段代码是一个Python类的构造函数,用于初始化类的属性。
其中,d_model是一个整数,表示模型的隐藏层大小或者词向量维度。
dropout是一个浮点数,表示在模型训练过程中随机失活的比例,以避免过拟合。
max_len也是一个整数,表示输入序列的最大长度,超出这个长度的部分将被截断。
这些参数在类实例化时需要传入,并且可以根据需要进行调整。
相关问题
class PositionalEncoding(nn.Module): def __init__(self, d_model, dropout, max_len=5000): # d_model:词嵌入维度 # dropout:置零比率 # max_len:每个句子最大的长度 super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2) * -(math.log(1000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) self.register_buffer("pe", pe) def forward(self, x): x = x + Variable(self.pe[:, :x.size(1)], requires_grad=False) return self.dropout(x)
这是一个用于实现位置编码的类`PositionalEncoding`。在Transformer模型中,位置编码用于为输入序列中的每个位置添加一些位置信息。这样做是因为Transformer没有使用循环或卷积操作来处理序列,而是通过自注意力机制来处理输入的位置关系。
在这个类中,`__init__`方法初始化了位置编码层的参数。`d_model`表示词嵌入的维度,`dropout`表示置零比率,`max_len`表示每个句子最大的长度。在该方法中,首先创建一个大小为`max_len`x`d_model`的零矩阵`pe`,然后计算位置编码的值。位置编码的计算方式是根据位置和维度来计算正弦和余弦值,并将它们分别赋值给`pe`矩阵的奇数和偶数列。最后,将生成的位置编码矩阵`pe`添加到模型的缓冲区中。
`forward`方法用于应用位置编码到输入张量`x`上。首先从缓冲区中获取位置编码矩阵`pe`的前`x.size(1)`个位置,并将其与输入张量相加。然后应用dropout操作,并返回结果。
请注意,此代码片段缺少一些必要的导入语句和变量定义,因此无法直接运行。如果您有其他问题,请继续提问。
class Transformer(nn.Module): def __init__(self, vocab_size: int, max_seq_len: int, embed_dim: int, hidden_dim: int, n_layer: int, n_head: int, ff_dim: int, embed_drop: float, hidden_drop: float): super().__init__() self.tok_embedding = nn.Embedding(vocab_size, embed_dim) self.pos_embedding = nn.Embedding(max_seq_len, embed_dim) layer = nn.TransformerEncoderLayer( d_model=hidden_dim, nhead=n_head, dim_feedforward=ff_dim, dropout=hidden_drop) self.encoder = nn.TransformerEncoder(layer, num_layers=n_layer) self.embed_dropout = nn.Dropout(embed_drop) self.linear1 = nn.Linear(embed_dim, hidden_dim) self.linear2 = nn.Linear(hidden_dim, embed_dim) def encode(self, x, mask): x = x.transpose(0, 1) x = self.encoder(x, src_key_padding_mask=mask) x = x.transpose(0, 1) return x
这是一段使用 PyTorch 实现的 Transformer 模型的代码,用于自然语言处理任务中的序列建模,例如文本分类、机器翻译等。
该模型的输入是一个词汇表大小为 `vocab_size`,最大序列长度为 `max_seq_len` 的词嵌入(embedding)矩阵,其中每个词嵌入的维度为 `embed_dim`。模型使用了 `n_layer` 层 TransformerEncoderLayer,每个 EncoderLayer 中包含了 `n_head` 个注意力头(self-attention)。每个 EncoderLayer 的隐藏层大小为 `hidden_dim`,Feedforward 层的大小为 `ff_dim`,并在每个 EncoderLayer 后应用了一个 `hidden_drop` 的 Dropout。在模型的输入层和第一个 EncoderLayer 之间,使用了一个 `embed_drop` 的 Dropout。
在 forward 方法中,输入的 `x` 是一个形状为 `(batch_size, seq_len)` 的整数张量,表示一个批次中的多个序列。`mask` 是一个形状为 `(batch_size, seq_len)` 的布尔型张量,用于指示哪些位置是填充值,需要被屏蔽。在 encode 方法中,模型首先将输入的 `x` 转置为 `(seq_len, batch_size)` 的形状,然后将其输入到 TransformerEncoder 中进行编码。最后,将编码结果再次转置为 `(batch_size, seq_len)` 的形状并返回。
阅读全文