\frac{1}{n} \sum_{i=1}^{n}X_i^TX_i 的期望

时间: 2024-02-10 21:33:49 浏览: 18
根据线性代数中向量内积的定义,对于一个 $d$ 维向量 $\boldsymbol{x}$,有 $\boldsymbol{x}^T\boldsymbol{x} = \sum_{i=1}^{d}x_i^2$。因此,可以将 $\frac{1}{n} \sum_{i=1}^{n}X_i^TX_i$ 写成如下形式: $$ \frac{1}{n} \sum_{i=1}^{n}X_i^TX_i = \frac{1}{n} \sum_{i=1}^{n}\sum_{j=1}^{d}X_{ij}^2 $$ 其中,$X_{ij}$ 表示第 $i$ 个样本的第 $j$ 个特征。由于每个特征都是独立同分布的,因此有 $E(X_{ij}^2) = Var(X_{ij}) + (E[X_{ij}])^2$。同时,根据样本均值的定义,有 $E(\frac{1}{n}\sum_{i=1}^{n}X_{ij}) = E(X_{ij})$。因此,可以得到: $$ E(\frac{1}{n} \sum_{i=1}^{n}X_i^TX_i) = E(\frac{1}{n} \sum_{i=1}^{n}\sum_{j=1}^{d}X_{ij}^2) = \frac{1}{n}\sum_{i=1}^{n}\sum_{j=1}^{d}(Var(X_{ij}) + (E[X_{ij}])^2) = \sum_{j=1}^{d}(Var(X_{ij}) + (E[X_{ij}])^2) $$ 因此,$\frac{1}{n} \sum_{i=1}^{n}X_i^TX_i$ 的期望是每个特征的方差加上期望平方和。
相关问题

把NMI = \frac{-2 \cdot \sum_{i=1}^C \sum_{j=1}^K \frac{n_{ij}}{n} \log\left(\frac{n_{ij} \cdot n}{n_i \cdot n_j}\right)}{\sum_{i=1}^C \frac{n_i}{n} \log\left(\frac{n_i}{n}\right) + \sum_{j=1}^K \frac{n_j}{n} \log\left(\frac{n_j}{n}\right)}转换成普通数学公式

将NMI的计算公式转换成普通数学公式: NMI = \frac{-2 \cdot \sum_{i=1}^C \sum_{j=1}^K \frac{n_{ij}}{n} \log\left(\frac{n_{ij} \cdot n}{n_i \cdot n_j}\right)}{\sum_{i=1}^C \frac{n_i}{n} \log\left(\frac{n_i}{n}\right) + \sum_{j=1}^K \frac{n_j}{n} \log\left(\frac{n_j}{n}\right)} 可以进一步简化为: NMI = \frac{2 \cdot I(C, K)}{H(C) + H(K)} 其中, - I(C, K) 表示互信息(Mutual Information)的计算,定义为:I(C, K) = \sum_{i=1}^C \sum_{j=1}^K \frac{n_{ij}}{n} \log\left(\frac{n_{ij} \cdot n}{n_i \cdot n_j}\right) - H(C) 表示聚类结果的熵(Entropy),定义为:H(C) = -\sum_{i=1}^C \frac{n_i}{n} \log\left(\frac{n_i}{n}\right) - H(K) 表示真实标签的熵(Entropy),定义为:H(K) = -\sum_{j=1}^K \frac{n_j}{n} \log\left(\frac{n_j}{n}\right) 通过计算互信息、聚类结果的熵和真实标签的熵,可以得到NMI的值。

$$\max \sum_{i=1}^{500}\sum_{j=1}^{500} x_{i,j}$$ s.t. $$\sum_{i=i_0}^{i_0+9}\sum_{j=j_0}^{j_0+9} x_{i,j} \leq 1, \forall i_0,j_0,h$$ $$\sum_{i=i_0-h}^{i_0+h}\sum_{j=j_0-h}^{j_0+h} x_{i,j} \leq (2h+1)^2, \forall i_0,j_0,h$$ $$\sum_{i=i_0-d}^{i_0+d}\sum_{j=j_0-d}^{j_0+d} x_{i,j} \leq \pi(2.5)^2, \forall i_0,j_0$$ $$\frac{1}{N}\sum_{i=1}^{500}\sum_{j=1}^{500}(h_{i,j}-\bar{h})^2 \leq \sigma^2$$ $$\sum_{i=1}^{500}\sum_{j=1}^{500}(h_{i,j}-\bar{h}_{i,j})^2 \leq \delta$$ $$\sum_{i=1}^{500}\sum_{j=1}^{500} (10h_{i,j}+10)x_{i,j} \leq B$$ $$x_{i,j} \in {0,1}, \forall i,j$$

这是一个线性规划问题。其中,$x_{i,j}$ 表示第 $i$ 行第 $j$ 列是否选中,$\sum_{i=1}^{500}\sum_{j=1}^{500} x_{i,j}$ 表示选中的格子数。我们需要最大化选中的格子数,同时满足一些限制条件。 限制条件如下: 1. $\sum_{i=i_0}^{i_0+9}\sum_{j=j_0}^{j_0+9} x_{i,j} \leq 1, \forall i_0,j_0,h$:对于每个 $10\times 10$ 的方格中,最多只能选中一个格子。 2. $\sum_{i=i_0-h}^{i_0+h}\sum_{j=j_0-h}^{j_0+h} x_{i,j} \leq (2h+1)^2, \forall i_0,j_0,h$:对于每个半径为 $h$ 的正方形中,最多只能选中 $(2h+1)^2$ 个格子。 3. $\sum_{i=i_0-d}^{i_0+d}\sum_{j=j_0-d}^{j_0+d} x_{i,j} \leq \pi(2.5)^2, \forall i_0,j_0$:对于每个半径为 $2.5$ 的圆中,最多只能选中 $\pi(2.5)^2$ 个格子。 4. $\frac{1}{N}\sum_{i=1}^{500}\sum_{j=1}^{500}(h_{i,j}-\bar{h})^2 \leq \sigma^2$:选中的格子的高度的方差不能超过 $\sigma^2$。 5. $\sum_{i=1}^{500}\sum_{j=1}^{500}(h_{i,j}-\bar{h}_{i,j})^2 \leq \delta$:选中的格子的高度与平均高度的差的平方和不能超过 $\delta$。 6. $\sum_{i=1}^{500}\sum_{j=1}^{500} (10h_{i,j}+10)x_{i,j} \leq B$:选中的格子的高度之和不能超过 $B$。 我们可以将这个问题表示为如下的线性规划模型: $$\max \sum_{i=1}^{500}\sum_{j=1}^{500} x_{i,j}$$ s.t. $$\sum_{i=i_0}^{i_0+9}\sum_{j=j_0}^{j_0+9} x_{i,j} \leq 1, \forall i_0,j_0,h$$ $$\sum_{i=i_0-h}^{i_0+h}\sum_{j=j_0-h}^{j_0+h} x_{i,j} \leq (2h+1)^2, \forall i_0,j_0,h$$ $$\sum_{i=i_0-d}^{i_0+d}\sum_{j=j_0-d}^{j_0+d} x_{i,j} \leq \pi(2.5)^2, \forall i_0,j_0$$ $$\frac{1}{N}\sum_{i=1}^{500}\sum_{j=1}^{500}(h_{i,j}-\bar{h})^2 \leq \sigma^2$$ $$\sum_{i=1}^{500}\sum_{j=1}^{500}(h_{i,j}-\bar{h}_{i,j})^2 \leq \delta$$ $$\sum_{i=1}^{500}\sum_{j=1}^{500} (10h_{i,j}+10)x_{i,j} \leq B$$ $$x_{i,j} \in {0,1}, \forall i,j$$ 其中,$N$ 表示选中的格子数,$\bar{h}$ 表示选中的格子的平均高度。

相关推荐

最新推荐

recommend-type

波士顿房价数据集Boston House Price

波士顿房价数据集Boston House Price 全网最便宜
recommend-type

FPGA实现UDP协议(包括ARP、ICMP)

三种实现FPGA实现UDP协议的代码工程(包括ARP、ICMP),包含使用设计文档。 第一种,米联客的DCP封装包 第二种,正点原子的源码工程 第三种,基于正点原子的赛灵思MAC核的代码工程。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解答下列问题:S—>S;T|T;T—>a 构造任意项目集规范族,构造LR(0)分析表,并分析a;a

对于这个文法,我们可以构造以下项目集规范族: I0: S -> .S S -> .T T -> .a I1: S -> S. [$ T -> T. [$ I2: S -> T. I3: S -> S.;S S -> S.;T T -> T.;a 其中,点(.)表示已经被扫描过的符号,;$表示输入串的结束符号。 根据项目集规范族,我们可以构造出LR(0)分析表: 状态 | a | $ ---- | - | - I0 | s3| I1 | |acc I2 | | 其中s3表示移进到状态3,acc表示接受。在分析字符串a;a时,我们可以按照以下步骤进行
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

mac上和window原生一样的历史剪切板工具有什么

好的,我明白了您的要求。关于您的问题,为使Mac与Windows的历史剪切板功能类似,可以使用第三方工具"CopyClip"、"Alfred"、"Clipboard Manager"等。这些工具可以记录您复制到剪切板的所有内容,而不仅仅是最后一次复制。同时,它们还可以进行搜索和过滤,以便您更快地找到需要的内容。希望这能回答您的问题。