这个数据具体如下:我现在有个xlxs格式的数据集,其中包括以下信息:Unique customer ID Churn Flag Tenure for using the platform (months) Preferred login device of customer City tier Distance in between warehouse to home of customer The age of customer(eg.2:20-29) Marital status of customer Gender of customer Number of hours spend Preferred order category of customer in last month Satisfactory score of customer on service Total number of Streamers Followed by particular customer Any complaint has been raised in last month Percentage increases in order from last year Total number of coupon has been used in last month Total number of orders has been places in last month Day Since last order by customer Average cashback in last month 它们的缩写分别是:CustomerID Churn Tenure PreferredLoginDevice CityTier WarehouseToHome AgeGroup MaritalStatus Gender HourSpendOnApp PreferedOrderCat SatisfactionScore NumberOfStreamerFollowed Complain OrderAmountHikeFromlastYear CouponUsed OrderCount DaySinceLastOrder DiscountAmount。请你帮我写一个完整的python代码,完成你说的以上步骤
时间: 2024-03-03 20:51:25 浏览: 168
好的,以下是一个基本的Python代码示例,实现了你所说的步骤:
```python
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
from lifetimes import BetaGeoFitter
from lifetimes.plotting import plot_frequency_recency_matrix, plot_probability_alive_matrix, plot_period_transactions
%matplotlib inline
# 1. 数据清洗
df = pd.read_excel('data.xlsx')
df.drop_duplicates(inplace=True)
df.dropna(inplace=True)
# 2. 探索性数据分析
plt.scatter(df['HourSpendOnApp'], df['OrderCount'])
plt.xlabel('HourSpendOnApp')
plt.ylabel('OrderCount')
# 3. 用户细分
X = df[['HourSpendOnApp', 'OrderCount']]
kmeans = KMeans(n_clusters=3, random_state=0).fit(X)
df['Cluster'] = kmeans.labels_
# 4. 用户转化率分析
bgf = BetaGeoFitter(penalizer_coef=0.0)
bgf.fit(df['Tenure'], df['OrderCount'], df['DaySinceLastOrder'])
plot_frequency_recency_matrix(bgf)
plot_probability_alive_matrix(bgf)
plot_period_transactions(bgf)
# 5. 用户留存率分析
from lifetimes.plotting import plot_churn_attribution
plot_churn_attribution(bgf, df['DaySinceLastOrder'], df['Churn'])
# 6. 用户行为预测
from sklearn.linear_model import LinearRegression
X = df[['HourSpendOnApp', 'OrderCount']]
y = df['DiscountAmount']
model = LinearRegression().fit(X, y)
print(model.score(X, y))
```
其中,前三行代码读取数据并清洗了数据,第4步使用了lifetimes库计算了用户的转化率,第5步使用了lifetimes库计算了用户的留存率,第6步使用了sklearn库建立了线性回归模型,预测了用户的折扣金额。你可以根据自己的需求进行修改和扩展。
阅读全文