VGG16模型结构详解
时间: 2023-08-06 16:16:50 浏览: 119
Vgg16 model
VGG16是一个深度卷积神经网络模型,由Simonyan和Zisserman在2014年提出,它在ImageNet Large Scale Visual Recognition Challenge (ILSVRC)竞赛中取得了当时最好的结果。
VGG16的模型结构非常简单而又经典,包含16个卷积层和3个全连接层,其中卷积层的卷积核大小都是3x3,步长为1,填充为1,池化层的池化窗口大小都是2x2,步长为2,使用了ReLU作为激活函数。具体的模型结构如下:
```
Input: (224, 224, 3)
Convolutional Layer 1: 64 filters, 3x3, stride 1, padding 1
Activation: ReLU
Convolutional Layer 2: 64 filters, 3x3, stride 1, padding 1
Activation: ReLU
Max Pooling Layer 1: 2x2, stride 2
Convolutional Layer 3: 128 filters, 3x3, stride 1, padding 1
Activation: ReLU
Convolutional Layer 4: 128 filters, 3x3, stride 1, padding 1
Activation: ReLU
Max Pooling Layer 2: 2x2, stride 2
Convolutional Layer 5: 256 filters, 3x3, stride 1, padding 1
Activation: ReLU
Convolutional Layer 6: 256 filters, 3x3, stride 1, padding 1
Activation: ReLU
Convolutional Layer 7: 256 filters, 3x3, stride 1, padding 1
Activation: ReLU
Max Pooling Layer 3: 2x2, stride 2
Convolutional Layer 8: 512 filters, 3x3, stride 1, padding 1
Activation: ReLU
Convolutional Layer 9: 512 filters, 3x3, stride 1, padding 1
Activation: ReLU
Convolutional Layer 10: 512 filters, 3x3, stride 1, padding 1
Activation: ReLU
Max Pooling Layer 4: 2x2, stride 2
Convolutional Layer 11: 512 filters, 3x3, stride 1, padding 1
Activation: ReLU
Convolutional Layer 12: 512 filters, 3x3, stride 1, padding 1
Activation: ReLU
Convolutional Layer 13: 512 filters, 3x3, stride 1, padding 1
Activation: ReLU
Max Pooling Layer 5: 2x2, stride 2
Flatten Layer
Fully Connected Layer 1: 4096 neurons
Activation: ReLU
Fully Connected Layer 2: 4096 neurons
Activation: ReLU
Fully Connected Layer 3: 1000 neurons (for ImageNet classification)
Activation: Softmax
Output: 1000 classes
```
VGG16的模型结构非常简单,但是由于其深度和卷积核大小的选择,使得它在图像分类等任务上表现非常优秀。
阅读全文