写个python代码使用meanshift聚类算法对GTSRB数据集进行聚类
时间: 2023-06-30 07:16:59 浏览: 109
好的,以下是使用meanshift聚类算法对GTSRB数据集进行聚类的Python代码:
```python
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import MeanShift, estimate_bandwidth
from skimage import color, io
import os
# Load the GTSRB dataset
data_path = '/path/to/GTSRB/Final_Training/Images'
folders = os.listdir(data_path)
images = []
for folder in folders:
folder_path = os.path.join(data_path, folder)
if not os.path.isdir(folder_path):
continue
image_names = os.listdir(folder_path)
for image_name in image_names:
image_path = os.path.join(folder_path, image_name)
image = io.imread(image_path)
images.append(color.rgb2gray(image).ravel())
# Convert the list of images to a numpy array
X = np.array(images)
# Estimate the bandwidth of the kernel used in mean shift
bandwidth = estimate_bandwidth(X, quantile=0.2, n_samples=500)
# Perform mean shift clustering
ms = MeanShift(bandwidth=bandwidth, bin_seeding=True)
ms.fit(X)
# Get the labels and the number of clusters
labels = ms.labels_
n_clusters = len(np.unique(labels))
# Print the number of clusters
print('Number of clusters: %d' % n_clusters)
# Visualize the clusters
plt.figure(figsize=(10, 10))
plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis')
plt.show()
```
请注意,这个代码可以处理任何图像数据集,只需要将`data_path`变量设置为包含图像的文件夹的路径即可。
阅读全文