用java写一个读取kafka写入hive
时间: 2023-03-13 07:30:47 浏览: 148
我可以为您提供参考: 使用Java API for Apache Kafka(https://kafka.apache.org/documentation/)和Apache Hive(https://hive.apache.org/),可以实现从Kafka中读取数据,然后将其写入Hive中。
相关问题
用java代码写一个读取kafka写入hive
我可以给你提供一个简单的java代码,它可以帮助你从Kafka中读取数据并将其写入Hive中: import java.util.Properties;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; // 创建Kafka消费者
Properties props = new Properties();
KafkaConsumer consumer = new KafkaConsumer(props); // 创建Hadoop的配置
Configuration conf = new Configuration(); // 创建MapReduce任务
Job job = Job.getInstance(conf); // 启动消费者
ConsumerRecords records = consumer.poll(1000); // 将Kafka中的数据写入Hive中
MapredParquetOutputFormat.setOutputPath(job, new Path("/path/to/hive/table"));
FileOutputFormat.setOutputPath(job, new Path("/path/to/hive/table"));
job.waitForCompletion(true);
spark读取oracle写入kafka,sparkStreaming读取kafka写入hive表
可以按照以下步骤实现:
1. 首先,需要在Spark中使用JDBC连接Oracle数据库,读取数据。可以使用以下代码:
```scala
val jdbcUrl = "jdbc:oracle:thin:@localhost:1521:ORCL"
val jdbcUsername = "username"
val jdbcPassword = "password"
val jdbcDriverClass = "oracle.jdbc.driver.OracleDriver"
val connectionProperties = new Properties()
connectionProperties.put("user", jdbcUsername)
connectionProperties.put("password", jdbcPassword)
connectionProperties.put("driver", jdbcDriverClass)
val oracleDF = spark.read.jdbc(jdbcUrl, "table_name", connectionProperties)
```
2. 接下来,将数据写入Kafka。可以使用以下代码:
```scala
import org.apache.spark.sql.functions._
import org.apache.spark.sql.streaming.Trigger
val kafkaBrokers = "localhost:9092"
val kafkaTopic = "topic_name"
val kafkaDF = oracleDF.select(to_json(struct("*")).alias("value"))
.selectExpr("CAST(NULL AS STRING) AS key", "value")
.writeStream
.format("kafka")
.option("kafka.bootstrap.servers", kafkaBrokers)
.option("topic", kafkaTopic)
.trigger(Trigger.ProcessingTime("10 seconds"))
.start()
```
3. 最后,使用Spark Streaming从Kafka读取数据,并将其写入Hive表。可以使用以下代码:
```scala
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.types.{StringType, StructType}
import org.apache.spark.sql.functions._
val spark = SparkSession.builder
.appName("KafkaToHive")
.enableHiveSupport()
.getOrCreate()
val kafkaBrokers = "localhost:9092"
val kafkaTopic = "topic_name"
val schema = new StructType().add("column_name", StringType)
val kafkaDF = spark.readStream
.format("kafka")
.option("kafka.bootstrap.servers", kafkaBrokers)
.option("subscribe", kafkaTopic)
.option("startingOffsets", "earliest")
.load()
.select(from_json(col("value").cast("string"), schema).alias("data"))
.select("data.*")
kafkaDF.writeStream
.outputMode("append")
.foreachBatch { (batchDF, _) =>
batchDF.write.mode("append").insertInto("hive_table")
}
.start()
.awaitTermination()
```
注意:在执行代码之前,需要先在Hive中创建相应的表,以便可以将数据写入其中。
阅读全文