写一个flink代码,实现以下功能:从数据库解析binlog信息,实时写入hive
时间: 2024-05-09 14:18:47 浏览: 149
以下是一个简单的Flink代码,用于从MySQL数据库解析binlog信息,并将其实时写入Hive中。
```java
import org.apache.flink.api.java.utils.ParameterTool;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer;
import org.apache.flink.streaming.connectors.kafka.KafkaSerializationSchema;
import org.apache.flink.streaming.connectors.kafka.KafkaDeserializationSchema;
import org.apache.flink.streaming.util.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.functions.sink.SinkFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.serialization.SerializationSchema;
import org.apache.flink.api.common.serialization.DeserializationSchema;
import org.apache.flink.api.common.serialization.AbstractSerializationSchema;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.api.java.typeutils.TypeExtractor;
import org.apache.flink.api.java.tuple.Tuple2;
import java.util.Properties;
public class FlinkBinlogToHive {
public static void main(String[] args) throws Exception {
// 从命令行参数中获取配置信息
ParameterTool parameterTool = ParameterTool.fromArgs(args);
String bootstrapServers = parameterTool.get("bootstrapServers", "localhost:9092");
String groupId = parameterTool.get("groupId", "flink-binlog-to-hive");
String inputTopic = parameterTool.get("inputTopic", "binlog-topic");
String outputTopic = parameterTool.get("outputTopic", "hive-topic");
String mysqlHost = parameterTool.get("mysqlHost", "localhost");
int mysqlPort = parameterTool.getInt("mysqlPort", 3306);
String mysqlUser = parameterTool.get("mysqlUser", "root");
String mysqlPassword = parameterTool.get("mysqlPassword", "");
String hiveJdbcUrl = parameterTool.get("hiveJdbcUrl", "jdbc:hive2://localhost:10000/default");
String hiveUser = parameterTool.get("hiveUser", "hive");
String hivePassword = parameterTool.get("hivePassword", "");
// 设置Flink流计算环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// 设置Kafka消费者配置
Properties kafkaConsumerProps = new Properties();
kafkaConsumerProps.setProperty("bootstrap.servers", bootstrapServers);
kafkaConsumerProps.setProperty("group.id", groupId);
// 创建Kafka消费者
FlinkKafkaConsumer<String> kafkaConsumer = new FlinkKafkaConsumer<>(inputTopic, new SimpleStringSchema(), kafkaConsumerProps);
// 将binlog数据解析为Tuple2<数据库名, 表名>
kafkaConsumer.map(new MapFunction<String, Tuple2<String, String>>() {
@Override
public Tuple2<String, String> map(String value) throws Exception {
// 解析binlog数据,获取数据库名和表名
String[] parts = value.split("\\.");
String databaseName = parts[0];
String tableName = parts[1];
return new Tuple2<>(databaseName, tableName);
}
})
// 将解析后的数据写入Hive
.addSink(new SinkFunction<Tuple2<String, String>>() {
@Override
public void invoke(Tuple2<String, String> value) throws Exception {
// 建立Hive连接
Class.forName("org.apache.hive.jdbc.HiveDriver");
Connection conn = DriverManager.getConnection(hiveJdbcUrl, hiveUser, hivePassword);
// 创建Hive表
String createTableSql = String.format("CREATE TABLE IF NOT EXISTS %s.%s (id INT, name STRING)", value.f0, value.f1);
Statement stmt = conn.createStatement();
stmt.executeUpdate(createTableSql);
// 插入数据到Hive表
String insertSql = String.format("INSERT INTO %s.%s VALUES (1, 'test')", value.f0, value.f1);
stmt.executeUpdate(insertSql);
// 关闭连接
conn.close();
}
});
// 执行Flink任务
env.execute("Flink Binlog To Hive");
}
}
```
这个代码使用Flink从Kafka中读取binlog数据,解析出数据库名和表名,然后将数据写入Hive中。在这个例子中,我们只是简单地创建了一个表并插入了一条数据。在实际应用中,您需要根据自己的需要修改代码。
阅读全文