pytorch通道注意力 减少维度
时间: 2023-10-16 12:22:47 浏览: 68
PyTorch中的通道注意力可以通过以下步骤减少维度:
1.定义一个通道注意力层,其中包括一个全局池化层和一个线性层。
```python
class ChannelAttention(nn.Module):
def __init__(self, in_planes, ratio=16):
super(ChannelAttention, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.fc1 = nn.Conv2d(in_planes, in_planes // 16, 1, bias=False)
self.relu1 = nn.ReLU()
self.fc2 = nn.Conv2d(in_planes // 16, in_planes, 1, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))
max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))
out = self.sigmoid(avg_out + max_out)
return out
```
2.在模型中应用该层,对输入的张量进行通道注意力操作,从而减少维度。
```python
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.ca1 = ChannelAttention(64)
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(64)
self.ca2 = ChannelAttention(64)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=False)
self.bn3 = nn.BatchNorm2d(128)
self.ca3 = ChannelAttention(128)
self.conv4 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False)
self.bn4 = nn.BatchNorm2d(128)
self.ca4 = ChannelAttention(128)
self.conv5 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1, bias=False)
self.bn5 = nn.BatchNorm2d(256)
self.ca5 = ChannelAttention(256)
self.conv6 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False)
self.bn6 = nn.BatchNorm2d(256)
self.ca6 = ChannelAttention(256)
self.fc = nn.Linear(256, 10)
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)))
x = self.ca1(x) * x
x = F.relu(self.bn2(self.conv2(x)))
x = self.ca2(x) * x
x = F.max_pool2d(x, 2)
x = F.relu(self.bn3(self.conv3(x)))
x = self.ca3(x) * x
x = F.relu(self.bn4(self.conv4(x)))
x = self.ca4(x) * x
x = F.max_pool2d(x, 2)
x = F.relu(self.bn5(self.conv5(x)))
x = self.ca5(x) * x
x = F.relu(self.bn6(self.conv6(x)))
x = self.ca6(x) * x
x = F.avg_pool2d(x, 8)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
```
在这个例子中,通道注意力层被应用到模型的每个卷积层输出上,从而减少了每个卷积层输出的通道维度。
阅读全文