用Python写一个灰度图像的编码过程: 1. 构造8x8的子图;2、各像素值减去128;3、DCT正向变换;4、量化;5、“z”字行重排序并将其存入dct.my,使每一步的结果都输出
时间: 2023-03-28 21:04:57 浏览: 249
对于您的问题,我可以回答如下:
1. 构造8x8的子图:
```python
import numpy as np
# 构造8x8的子图
img = np.random.randint(, 256, size=(8, 8))
```
2. 各像素值减去128:
```python
# 各像素值减去128
img = img - 128
```
3. DCT正向变换:
```python
# DCT正向变换
from scipy.fftpack import dct
dct_img = dct(dct(img.T, norm='ortho').T, norm='ortho')
```
4. 量化:
```python
# 量化
quantization_table = np.array([[16, 11, 10, 16, 24, 40, 51, 61],
[12, 12, 14, 19, 26, 58, 60, 55],
[14, 13, 16, 24, 40, 57, 69, 56],
[14, 17, 22, 29, 51, 87, 80, 62],
[18, 22, 37, 56, 68, 109, 103, 77],
[24, 35, 55, 64, 81, 104, 113, 92],
[49, 64, 78, 87, 103, 121, 120, 101],
[72, 92, 95, 98, 112, 100, 103, 99]])
quantized_img = np.round(dct_img / quantization_table)
```
5. “z”字行重排序并将其存入dct.my:
```python
# “z”字行重排序并将其存入dct.my
dct_my = np.zeros((8, 8))
for i in range(8):
for j in range(8):
if (i + j) % 2 == :
dct_my[i, j] = quantized_img[j, i - j + 7]
else:
dct_my[i, j] = quantized_img[i - j + 7, j]
print(dct_my)
```
阅读全文