org.apache.hadoop.mapreduce
时间: 2023-04-16 09:04:18 浏览: 140
org.apache.hadoop.mapreduce是一个基于Hadoop框架的MapReduce编程模型。它提供了一种分布式计算的方式,可以在大规模数据集上进行高效的处理和分析。MapReduce模型将数据分成小块,然后在多个计算节点上并行处理,最后将结果合并。这种方式可以有效地利用集群的计算资源,提高数据处理的速度和效率。
相关问题
import java.io.IOException; import java.util.*; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.*; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.util.GenericOptionsParser; public class Merge { /********** Begin **********/ /********** End **********/ }
好的,这是一个基本的MapReduce程序的框架。在这个程序中,你需要完成mapper和reducer函数,然后将它们添加到这个框架中。下面是一个可能的实现:
```
import java.io.IOException;
import java.util.*;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class Merge {
public static class MyMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
private Text line = new Text();
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String[] words = value.toString().split("\\s+");
for (String word : words) {
line.set(word);
context.write(line, new IntWritable(1));
}
}
}
public static class MyReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: Merge <in> <out>");
System.exit(2);
}
Job job = Job.getInstance(conf, "Merge");
job.setJarByClass(Merge.class);
job.setMapperClass(MyMapper.class);
job.setCombinerClass(MyReducer.class);
job.setReducerClass(MyReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
```
在这个程序中,mapper函数将文件中的每一行作为输入,将每个单词作为键,并输出键值对,其中值为1。reducer函数将相同的键组合在一起,并将它们的值相加。最后,不重复的单词作为输出键,它们的出现次数作为输出值。
你可以将这个代码复制到你的Java文件中,并根据你的要求进行修改。请注意,你需要将输入和输出路径替换为你自己的路径。
WARN mapreduce.Counters: Group org.apache.hadoop.mapred.Task$Counter is deprecated. Use org.apache.hadoop.mapreduce.TaskCounter instead
这个警告信息是告诉你使用了已经被弃用的计数器组,建议使用新的计数器组。旧的计数器组是 org.apache.hadoop.mapred.Task$Counter,新的计数器组是 org.apache.hadoop.mapreduce.TaskCounter。你可以在代码中将旧的计数器组替换为新的计数器组来避免这个警告信息。
阅读全文