accuracy、recall、precision、F1和auc
时间: 2023-10-28 07:05:25 浏览: 103
这是关于机器学习中的性能指标的问题。这些指标用于评估分类器的性能。
- Accuracy(准确率)是分类器正确分类的样本数占总样本数的比例。即:准确率=正确分类的样本数/总样本数。
- Recall(召回率)是指实际为正例的样本中被分类器正确识别为正例的样本数占实际为正例的样本总数的比例。即:召回率=被正确识别为正例的样本数/实际为正例的样本总数。
- Precision(精确率)是指分类器正确识别为正例的样本数占分类器识别为正例的样本总数的比例。即:精确率=被正确识别为正例的样本数/分类器识别为正例的样本总数。
- F1 Score(F1得分)是Precision和Recall的调和平均值。即:F1得分=2*(精确率*召回率)/(精确率+召回率)。
- AUC(Area Under Curve,曲线下面积)是指分类器绘制的ROC曲线下面积的大小,用于评估二分类问题的分类器性能。
相关问题
基于sklearn鸢尾花数据集,编写代码训练一个AdaBoost模型,并给出accuracy、recall、precision、F1和auc等分类模型精度指标。
基于scikit-learn库中的鸢尾花数据集(Iris dataset),我们可以按照以下步骤训练一个AdaBoost分类器:
```python
# 导入所需库
from sklearn import datasets
from sklearn.ensemble import AdaBoostClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, recall_score, precision_score, f1_score, roc_auc_score
import numpy as np
# 加载鸢尾花数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 创建AdaBoost分类器
ada_clf = AdaBoostClassifier(n_estimators=50, random_state=42) # n_estimators设定树的数量,默认50
# 训练模型
ada_clf.fit(X_train, y_train)
# 预测
y_pred = ada_clf.predict(X_test)
# 计算评估指标
accuracy = accuracy_score(y_test, y_pred)
recall = recall_score(y_test, y_pred, average='macro') # 'macro'用于多类别平均
precision = precision_score(y_test, y_pred, average='macro')
f1 = f1_score(y_test, y_pred, average='macro')
roc_auc = roc_auc_score(y_test, ada_clf.predict_proba(X_test)[:, 1], multi_class='ovo') # 对应于二分类任务
print(f"Accuracy: {accuracy}")
print(f"Recall: {recall}")
print(f"Precision: {precision}")
print(f"F1 Score: {f1}")
print(f"AUC Score: {roc_auc}")
给出gpu上训练 CIFAR10 ,计算ACC PRECISION F1 RECALL AUC 及每一类ROC曲线的 pytorch 代码
好的,以下是给出GPU上训练CIFAR10并计算指标的PyTorch代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_curve, auc
# 定义网络模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 32, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(32, 64, 5)
self.fc1 = nn.Linear(64 * 5 * 5, 256)
self.fc2 = nn.Linear(256, 10)
def forward(self, x):
x = self.pool(nn.functional.relu(self.conv1(x)))
x = self.pool(nn.functional.relu(self.conv2(x)))
x = x.view(-1, 64 * 5 * 5)
x = nn.functional.relu(self.fc1(x))
x = self.fc2(x)
return x
# 加载数据集并进行数据增强
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=128, shuffle=False, num_workers=2)
# 定义损失函数和优化器
net = Net()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
# 将模型移动到GPU上进行训练
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
net.to(device)
# 训练模型
for epoch in range(20):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 100 == 99:
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100))
running_loss = 0.0
# 在测试集上进行预测并计算各项指标
y_true = []
y_pred = []
y_score = []
net.eval()
with torch.no_grad():
for data in testloader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
y_true += labels.cpu().numpy().tolist()
y_pred += predicted.cpu().numpy().tolist()
y_score += nn.functional.softmax(outputs, dim=1).cpu().numpy().tolist()
acc = accuracy_score(y_true, y_pred)
precision = precision_score(y_true, y_pred, average='macro')
recall = recall_score(y_true, y_pred, average='macro')
f1 = f1_score(y_true, y_pred, average='macro')
fpr = {}
tpr = {}
roc_auc = {}
for i in range(10):
fpr[i], tpr[i], _ = roc_curve([1 if j == i else 0 for j in y_true], [score[i] for score in y_score])
roc_auc[i] = auc(fpr[i], tpr[i])
print("Accuracy:", acc)
print("Precision:", precision)
print("Recall:", recall)
print("F1 score:", f1)
for i in range(10):
print("ROC AUC of class", i, ":", roc_auc[i])
```
这段代码会输出ACC PRECISION F1 RECALL AUC以及每一类ROC曲线的值。
阅读全文