我现在进行机器学习,模型评估函数返回一个指标字典evaluation_results = { 'Accuracy': accuracy, 'Precision': precision, 'Recall': recall, 'F1-score': f1, 'AUC': auc_avg } return evaluation_results 请现在有knn_eva,forest_eva,xgboost_eva,svm_eva,decision_eva,nb_eva这六个模型的返回值,请对他们进行可视化,给出python代码
时间: 2024-04-08 17:30:57 浏览: 145
当你有这六个模型的返回值时,你可以使用matplotlib库来进行可视化。下面是一个示例的Python代码,它将每个模型的评估结果绘制成条形图:
```python
import matplotlib.pyplot as plt
# 模型名称
models = ['knn', 'forest', 'xgboost', 'svm', 'decision', 'nb']
# 模型评估结果
evaluation_results = {
'knn': knn_eva,
'forest': forest_eva,
'xgboost': xgboost_eva,
'svm': svm_eva,
'decision': decision_eva,
'nb': nb_eva
}
# 评估指标
metrics = ['Accuracy', 'Precision', 'Recall', 'F1-score', 'AUC']
# 绘制条形图
for metric in metrics:
values = [evaluation_results[model][metric] for model in models]
plt.bar(models, values)
plt.xlabel('Models')
plt.ylabel(metric)
plt.title(f'{metric} for each model')
plt.show()
```
这段代码会为每个评估指标绘制一个条形图,其中x轴表示模型名称,y轴表示评估指标的值。你可以根据需要修改该代码以适应你的数据和需求。
阅读全文