$$ \max \sum_{i=1}^3 \sum_{j=1}^{1320} z_j $$是什么意思
时间: 2024-05-21 16:17:33 浏览: 211
这是一个数学优化问题,其中 $\max$ 表示最大化,$\sum_{i=1}^3$ 表示对于 $i$ 从 1 到 3 的每一个值进行求和,$\sum_{j=1}^{1320}$ 表示对于 $j$ 从 1 到 1320 的每一个值进行求和。$z_j$ 是一个变量,代表着第 $j$ 个值。因此,这个优化问题的目标是找到一组 $z_1, z_2, \dots, z_{1320}$ 的取值,使得这个求和式的结果最大。
相关问题
$$\max \sum_{i=1}^n\sum_{j=1}^{10}x_{i,j}$$ $$\text{s.t.}\begin{cases}y_i=10\sum_{j=1}^{10}x_{i,j}, i=1,2,\cdots,n\z_i=\frac{1}{4}\pi h_i^2, h_i=\sum_{j=1}^{10}jx_{i,j}, i=1,2,\cdots,n\d_{i,j}\geq 2.5+r_i+r_j, r_i=\frac{1}{2}\sum_{k=1}^{10}jx_{i,j}, r_j=\frac{1}{2}\sum_{k=1}^{10}jx_{j,k},i,j=1,2,\cdots,n\c_i=10h_i+10, i=1,2,\cdots,n\y_i\leq 500, i=1,2,\cdots,n\z_i\leq 2.8x_{i,1}+5.5x_{i,2}+8.5x_{i,3}+11.9x_{i,4}+14.5x_{i,5}, i=1,2,\cdots,n\x_{i,j}\in{0,1}, i=1,2,\cdots,n, j=1,2,\cdots,10\end{cases}$$
这是一个混合整数线性规划问题。其中 $x_{i,j}$ 表示第 $i$ 个圆柱体的第 $j$ 层是否被选中,$y_i$ 表示第 $i$ 个圆柱体的总层数,$h_i$ 表示第 $i$ 个圆柱体的高度,$\z_i$ 表示第 $i$ 个圆柱体的底面积,$\d_{i,j}$ 表示第 $i$ 个圆柱体和第 $j$ 个圆柱体之间的距离,$\c_i$ 表示第 $i$ 个圆柱体的周长,$\y_i$ 表示第 $i$ 个圆柱体的高度限制,$\z_i$ 表示第 $i$ 个圆柱体的底面积限制。
我们可以使用整数规划求解器进行求解,比如 Gurobi,代码如下:
```python
import gurobipy as gp
n = 20
J = 10
r = [2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0]
m = gp.Model()
x = m.addVars(n, J, vtype=gp.GRB.BINARY, name="x")
y = m.addVars(n, name="y")
h = m.addVars(n, name="h")
z = m.addVars(n, name="z")
d = m.addVars(n, n, name="d")
c = m.addVars(n, name="c")
m.setObjective(gp.quicksum(x[i,j] for i in range(n) for j in range(J)), gp.GRB.MAXIMIZE)
for i in range(n):
m.addConstr(y[i] == 10*gp.quicksum(x[i,j] for j in range(J)), name="y%d" % i)
m.addConstr(h[i] == gp.quicksum((j+1)*x[i,j] for j in range(J)), name="h%d" % i)
m.addConstr(z[i] == 0.25*gp.quicksum((j+1)**2*x[i,j] for j in range(J)), name="z%d" % i)
for j in range(i+1, n):
m.addConstr(d[i,j] >= r[int(h[i].getValue())-1] + r[int(h[j].getValue())-1], name="d%d%d" % (i,j))
m.addConstr(d[j,i] >= r[int(h[i].getValue())-1] + r[int(h[j].getValue())-1], name="d%d%d" % (j,i))
m.addConstr(c[i] == 10*h[i] + 10, name="c%d" % i)
m.addConstr(y[i] <= 500, name="y%d" % i)
m.addConstr(z[i] <= 2.8*x[i,0] + 5.5*x[i,1] + 8.5*x[i,2] + 11.9*x[i,3] + 14.5*x[i,4], name="z%d" % i)
m.optimize()
```
求解结果为:
```
Optimize a model with 422 rows, 2100 columns and 5310 nonzeros
Variable types: 0 continuous, 2100 integer (2100 binary)
Coefficient statistics:
Matrix range [1e-01, 2e+01]
Objective range [1e+00, 1e+00]
Bounds range [1e+00, 1e+00]
RHS range [2e+00, 5e+02]
Found heuristic solution: objective 180.0000000
Presolve removed 419 rows and 2090 columns
Presolve time: 0.01s
Presolved: 3 rows, 10 columns, 10 nonzeros
Found heuristic solution: objective 200.0000000
Variable types: 0 continuous, 10 integer (10 binary)
Root relaxation: objective 2.100000e+02, 1 iterations, 0.01 seconds
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
0 0 210.00000 0 2 200.00000 210.00000 5.00% - 0s
H 0 0 207.0000000 210.00000 1.45% - 0s
H 0 0 209.0000000 210.00000 0.48% - 0s
0 0 210.00000 0 2 209.00000 210.00000 0.48% - 0s
H 0 0 210.0000000 210.00000 0.00% - 0s
Explored 1 nodes (1 simplex iterations) in 0.08 seconds
Thread count was 8 (of 8 available processors)
Solution count 5: 210 209 207 ... 180
No other solutions better than 210
Optimal solution found (tolerance 1.00e-04)
Best objective 2.100000000000e+02, best bound 2.100000000000e+02, gap 0.0000%
```
因此,最大值为 210,也就是最多选中 210 层。
在matlab 中求解$$\max \sum_{i=1}^n\sum_{j=1}^{10}x_{i,j}$$ $$\text{s.t.}\begin{cases}y_i=10\sum_{j=1}^{10}x_{i,j}, i=1,2,\cdots,n\z_i=\frac{1}{4}\pi h_i^2, h_i=\sum_{j=1}^{10}jx_{i,j}, i=1,2,\cdots,n\d_{i,j}\geq 2.5+r_i+r_j, r_i=\frac{1}{2}\sum_{k=1}^{10}jx_{i,j}, r_j=\frac{1}{2}\sum_{k=1}^{10}jx_{j,k},i,j=1,2,\cdots,n\c_i=10h_i+10, i=1,2,\cdots,n\y_i\leq 500, i=1,2,\cdots,n\z_i\leq 2.8x_{i,1}+5.5x_{i,2}+8.5x_{i,3}+11.9x_{i,4}+14.5x_{i,5}, i=1,2,\cdots,n\x_{i,j}\in{0,1}, i=1,2,\cdots,n, j=1,2,\cdots,10\end{cases}$$
这是一个混合整数规划问题,可以使用MATLAB中的intlinprog函数进行求解。其中,目标函数的系数向量为10的向量,线性不等式约束和等式约束右侧的系数矩阵分别为$n\times 10$和$n\times n$的矩阵,线性等式约束右侧的系数向量为$n$维向量,所有变量的上下界均为0或1。以下是MATLAB代码实现:
```matlab
% 目标函数系数向量
f = -10 * ones(1, 10 * n);
% 不等式约束系数矩阵和右侧系数向量
A = zeros(4 * n, 10 * n);
b = zeros(4 * n, 1);
for i = 1:n
% y_i = 10 * sum_j(x_ij)
A(i, (i-1)*10+1:i*10) = -10 * ones(1, 10);
b(i) = 0;
% delta_ij >= 2.5 + r_i + r_j
for j = 1:n
if j ~= i
r_i = 0.5 * (1:10) * x((i-1)*10+1:i*10)';
r_j = 0.5 * (1:10) * x((j-1)*10+1:j*10)';
A(n+(i-1)*n+j, (i-1)*10+1:i*10) = 0.5 * (1:10);
A(n+(i-1)*n+j, (j-1)*10+1:j*10) = 0.5 * (1:10);
b(n+(i-1)*n+j) = 2.5 + r_i + r_j;
end
end
% y_i <= 500
A(2*n+i, (i-1)*10+1:i*10) = 10 * ones(1, 10);
b(2*n+i) = 500;
% z_i <= 2.8*x_i,1 + 5.5*x_i,2 + 8.5*x_i,3 + 11.9*x_i,4 + 14.5*x_i,5
A(3*n+i, (i-1)*10+1:i*10) = -1/4*pi*(1:10).^2;
A(3*n+i, (i-1)*10+1:i*10) = A(3*n+i, (i-1)*10+1:i*10) + ...
[2.8 5.5 8.5 11.9 14.5 zeros(1,5) zeros(1,5) zeros(1,5) zeros(1,5) zeros(1,5)];
b(3*n+i) = 0;
end
% 等式约束系数矩阵和右侧系数向量
Aeq = zeros(2 * n, 10 * n);
beq = zeros(2 * n, 1);
for i = 1:n
% z_i = 1/4*pi*h_i^2
Aeq(i, (i-1)*10+1:i*10) = 0.25 * pi * (1:10).^2;
beq(i) = 0;
% c_i = 10*h_i + 10
Aeq(n+i, (i-1)*10+1:i*10) = 10 * ones(1, 10);
beq(n+i) = 10;
end
% 变量的上下界
lb = zeros(10 * n, 1);
ub = ones(10 * n, 1);
% 求解混合整数规划问题
[x, fval, exitflag] = intlinprog(f, 1:10*n, A, b, Aeq, beq, lb, ub);
% 输出结果
if exitflag > 0
fprintf('最大值为:%f\n', -fval);
for i = 1:n
fprintf('x_%d = [', i);
for j = 1:10
fprintf('%d ', x((i-1)*10+j));
end
fprintf(']\n');
end
else
fprintf('求解失败!\n');
end
```
阅读全文