class TaipyPipeline: def open_spider(self, spider): self.f=open("太平洋.csv", "w", encoding='utf-8') self.w = csv.writer(self.f) titlelist=['车名','热度','价格','品牌','车型'] self.w.writerow(titlelist) def process_item(self, item, spider): k = list(dict(item).values()) self.listtemp = [] for a, b, c, d, e in zip(k[0], k[1], k[2], k[3], k[4]): self.temp = [a, b, c, d, e] self.listtemp.append(self.temp) self.w.writerows(self.listtemp) return item def close_spider(self, spider): self.f.close() 解释
时间: 2024-04-04 08:31:42 浏览: 98
这段代码是一个Scrapy的pipeline,用于将爬取到的数据存储为CSV格式。下面是每个方法的解释:
- `open_spider(self, spider)`:这个方法在爬虫开始运行时调用。在这个方法中,打开一个名为“太平洋.csv”的文件,并创建一个csv.writer对象。然后,将标题行写入文件中。
- `process_item(self, item, spider)`:这个方法在爬虫抓取到一个item时调用。在这个方法中,将item中的数据转换为一个列表,并将其写入到CSV文件中。这个方法返回item,以便后续的pipeline处理。
- `close_spider(self, spider)`:这个方法在爬虫结束时调用。在这个方法中,关闭CSV文件。
通过这个pipeline,您可以将爬取到的数据存储为CSV格式,方便后续的数据分析和处理。
相关问题
作为python开发,使用scrapy框架,找到class='pai-item pai-status-doing'的<li>标记内的<p>里的文字内容为estate_name; <em class='pai-xmpp-current-price‘>的文字内容作为price,提取的内容输出到csv里
好的,你想问如何使用 Scrapy 框架找到 class='pai-item pai-status-doing' 的 `<li>` 标记内的 `<p>` 里的文字内容为 estate_name;`<em class='pai-xmpp-current-price'>` 的文字内容作为 price,然后将提取的内容输出到 CSV 文件中,对吧?
以下是实现这个功能的示例代码:
```python
import scrapy
import csv
class MySpider(scrapy.Spider):
name = 'my_spider'
start_urls = ['http://example.com']
def parse(self, response):
# 找到 class='pai-item pai-status-doing' 的 <li> 标记
for li in response.css('li.pai-item.pai-status-doing'):
# 提取 estate_name 和 price
estate_name = li.css('p::text').extract_first()
price = li.css('em.pai-xmpp-current-price::text').extract_first()
# 将提取的内容输出到 CSV 文件中
with open('data.csv', 'a', encoding='utf-8', newline='') as f:
writer = csv.writer(f)
writer.writerow([estate_name, price])
```
在这个示例中,我们首先使用 CSS 选择器找到 class='pai-item pai-status-doing' 的 `<li>` 标记。然后,我们使用 CSS 选择器提取 `<p>` 标记里的 estate_name 和 `<em>` 标记里的 price。最后,我们将 estate_name 和 price 写入 CSV 文件中。
注意,我们在打开 CSV 文件时使用了 `'a'` 模式,表示以追加模式打开文件。这样做可以保证每次运行 Spider 时,新提取的内容会被写入到 CSV 文件的末尾,而不是覆盖原有的内容。
另外,我们还指定了 CSV 文件的编码为 `'utf-8'`,并设置 `newline=''` 参数来避免写入 CSV 文件时产生空行。
1. 利用Scrapy对接Seleniumr的方法实现爬取网站(新浪财经上海A股股票) 的股票信息,将爬取到的数据保存到csv文件并输出。爬取的数据包括:代码,名称,最新价,买入,卖出,昨收,今开,最高,最低,成交量/手,成交额/万,振幅,换手率,市净率,市盈率,总股本,流通股。爬取网址:https://vip.stock.finance.sina.com.cn/mkt/#sh_a 要求如下: (1) 创建Scrapy项目,命名为Stock,并在PyCharm中打开。 (2) 在items.py文件中,创建一个StockItem类添加Item数据; (3) 使用模板创建一个爬虫stock.py文件; (4) 在stock.py文件中,修改url地址和parse方法爬取数据; (5) 在middleware.py中添加process_request方法使用Selenium爬取网站信息; (6) 在settings.py文件中,添加管道信息、下载器信息,以及默认的请求头信息。 (7) 运行“scrapy crawl stock -o stock.csv”命令输出信息到文件。
很好,这是一个非常具体的问题,我将逐步为您解答。
首先,您需要安装Scrapy和Selenium模块,以及对应的浏览器驱动程序,如Chrome驱动程序。
然后,您需要创建一个Scrapy项目,命名为Stock,并在PyCharm中打开。可以使用以下命令:
```
scrapy startproject Stock
```
接下来,您需要在items.py文件中创建一个StockItem类添加Item数据。根据要求,该类应包括以下字段:
```
code = scrapy.Field()
name = scrapy.Field()
last_price = scrapy.Field()
buy = scrapy.Field()
sell = scrapy.Field()
yesterday_close = scrapy.Field()
today_open = scrapy.Field()
highest = scrapy.Field()
lowest = scrapy.Field()
volume = scrapy.Field()
turnover = scrapy.Field()
amplitude = scrapy.Field()
turnover_rate = scrapy.Field()
pb_ratio = scrapy.Field()
pe_ratio = scrapy.Field()
total_equity = scrapy.Field()
circulating_equity = scrapy.Field()
```
接下来,使用模板创建一个爬虫stock.py文件。使用以下命令:
```
scrapy genspider stock vip.stock.finance.sina.com.cn
```
在stock.py文件中,修改start_urls和parse方法来爬取数据。代码如下:
```python
import scrapy
from Stock.items import StockItem
class StockSpider(scrapy.Spider):
name = 'stock'
allowed_domains = ['vip.stock.finance.sina.com.cn']
start_urls = ['https://vip.stock.finance.sina.com.cn/mkt/#sh_a']
def start_requests(self):
for url in self.start_urls:
yield scrapy.Request(url=url, callback=self.parse, meta={'driver': self.driver})
def __init__(self, *args, **kwargs):
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
options = Options()
options.add_argument('--headless')
self.driver = webdriver.Chrome(options=options)
super().__init__(*args, **kwargs)
def parse(self, response):
self.driver.get(response.url)
stocks = response.xpath('//table[@id="dataTable"]/tbody/tr')
for stock in stocks:
item = StockItem()
item['code'] = stock.xpath('./td[1]/a/text()').get()
item['name'] = stock.xpath('./td[2]/a/text()').get()
item['last_price'] = stock.xpath('./td[3]/text()').get()
item['buy'] = stock.xpath('./td[4]/text()').get()
item['sell'] = stock.xpath('./td[5]/text()').get()
item['yesterday_close'] = stock.xpath('./td[6]/text()').get()
item['today_open'] = stock.xpath('./td[7]/text()').get()
item['highest'] = stock.xpath('./td[8]/text()').get()
item['lowest'] = stock.xpath('./td[9]/text()').get()
item['volume'] = stock.xpath('./td[10]/text()').get()
item['turnover'] = stock.xpath('./td[11]/text()').get()
item['amplitude'] = stock.xpath('./td[12]/text()').get()
item['turnover_rate'] = stock.xpath('./td[13]/text()').get()
item['pb_ratio'] = stock.xpath('./td[14]/text()').get()
item['pe_ratio'] = stock.xpath('./td[15]/text()').get()
item['total_equity'] = stock.xpath('./td[16]/text()').get()
item['circulating_equity'] = stock.xpath('./td[17]/text()').get()
yield item
```
接下来,在middleware.py中添加process_request方法使用Selenium爬取网站信息。代码如下:
```python
from scrapy import signals
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
from selenium.common.exceptions import TimeoutException
class StockDownloaderMiddleware(object):
def __init__(self, timeout=None):
self.timeout = timeout
super().__init__()
@classmethod
def from_crawler(cls, crawler):
return cls(timeout=crawler.settings.get('SELENIUM_TIMEOUT'))
def process_request(self, request, spider):
if request.meta.get('driver'):
spider.driver.get(request.url)
try:
WebDriverWait(spider.driver, self.timeout).until(EC.presence_of_element_located((By.XPATH, '//table[@id="dataTable"]/tbody/tr')))
return scrapy.HtmlResponse(url=spider.driver.current_url, body=spider.driver.page_source, encoding='utf-8', request=request)
except TimeoutException:
return scrapy.HtmlResponse(url=spider.driver.current_url, status=500, request=request)
```
最后,在settings.py文件中,添加管道信息、下载器信息,以及默认的请求头信息。代码如下:
```python
BOT_NAME = 'Stock'
SPIDER_MODULES = ['Stock.spiders']
NEWSPIDER_MODULE = 'Stock.spiders'
ROBOTSTXT_OBEY = False
DOWNLOADER_MIDDLEWARES = {
'scrapy_selenium.SeleniumMiddleware': 800,
'Stock.middlewares.StockDownloaderMiddleware': 543,
}
SELENIUM_DRIVER_NAME = 'chrome'
SELENIUM_DRIVER_EXECUTABLE_PATH = 'path/to/chromedriver'
SELENIUM_DRIVER_ARGUMENTS = ['--headless']
ITEM_PIPELINES = {
'Stock.pipelines.StockPipeline': 300,
}
FEED_FORMAT = 'csv'
FEED_URI = 'stock.csv'
DEFAULT_REQUEST_HEADERS = {
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
'Accept-Language': 'en',
}
```
现在,您可以运行以下命令来爬取数据并将其保存到csv文件中:
```
scrapy crawl stock -o stock.csv
```
希望这对您有所帮助。
阅读全文
相关推荐
















