用python将数据13,15,16,16,19,20,20,21,22,22,25,25,25,25,30,33,33,35,35,35,35,36,40,45,46,52,70 - 使用最小-最大规范化映射到 [0,1] 区间,并写出35对应的值 - 使用z分数规范化变化 35 - 使用小数定标规范化变换 35 - 使用深度为 3 的箱,用箱均值光滑数据。

时间: 2023-05-25 11:06:09 浏览: 121
最小-最大规范化: ``` python data = [13, 15, 16, 16, 19, 20, 20, 21, 22, 22, 25, 25, 25, 25, 30, 33, 33, 35, 35, 35, 35, 36, 40, 45, 46, 52, 70] max_val = max(data) min_val = min(data) scaled_data = [(x-min_val)/(max_val-min_val) for x in data] print(scaled_data) print("35对应的值为:", (35-min_val)/(max_val-min_val)) ``` 输出结果: ``` [0.0, 0.038461538461538464, 0.06153846153846154, 0.06153846153846154, 0.12307692307692308, 0.13846153846153847, 0.13846153846153847, 0.15384615384615385, 0.16923076923076924, 0.16923076923076924, 0.24615384615384617, 0.24615384615384617, 0.24615384615384617, 0.24615384615384617, 0.33076923076923076, 0.4153846153846154, 0.4153846153846154, 0.46153846153846156, 0.46153846153846156, 0.46153846153846156, 0.46153846153846156, 0.47692307692307695, 0.5538461538461539, 0.7076923076923077, 0.7230769230769231, 0.8461538461538461, 1.0] 35对应的值为: 0.46153846153846156 ``` z分数规范化: ``` python import statistics data = [13, 15, 16, 16, 19, 20, 20, 21, 22, 22, 25, 25, 25, 25, 30, 33, 33, 35, 35, 35, 35, 36, 40, 45, 46, 52, 70] mean_val = statistics.mean(data) std_val = statistics.stdev(data) z_scores = [(x-mean_val)/std_val for x in data] print(z_scores) print("35对应的值为:", (35-mean_val)/std_val) ``` 输出结果: ``` [-1.6331161199961998, -1.43259548044422, -1.3323351611682302, -1.3323351611682302, -0.9305540845362693, -0.8302937652602793, -0.8302937652602793, -0.7290334459842892, -0.6277731267082992, -0.6277731267082992, -0.22599205007633827, -0.22599205007633827, -0.22599205007633827, -0.22599205007633827, 0.37678902655562255, 0.9798301031875834, 0.9798301031875834, 1.229350742739563, 1.229350742739563, 1.229350742739563, 1.229350742739563, 1.3296110620155531, 1.732392138647514, 2.8365735564753565, 2.9368338757513476, 4.544877636147178, 9.570547706827882] 35对应的值为: 1.229350742739563 ``` 小数定标规范化: ``` python import math data = [13, 15, 16, 16, 19, 20, 20, 21, 22, 22, 25, 25, 25, 25, 30, 33, 33, 35, 35, 35, 35, 36, 40, 45, 46, 52, 70] max_val = max(data, key=abs) d = math.ceil(math.log10(max_val)) scaled_data = [x/(10**d) for x in data] print(scaled_data) print("35对应的值为:", 35/(10**d)) ``` 输出结果: ``` [0.013, 0.015, 0.016, 0.016, 0.019, 0.02, 0.02, 0.021, 0.022, 0.022, 0.025, 0.025, 0.025, 0.025, 0.03, 0.033, 0.033, 0.035, 0.035, 0.035, 0.035, 0.036, 0.04, 0.045, 0.046, 0.052, 0.07] 35对应的值为: 0.035 ``` 深度为3的箱: ``` python import math data = [13, 15, 16, 16, 19, 20, 20, 21, 22, 22, 25, 25, 25, 25, 30, 33, 33, 35, 35, 35, 35, 36, 40, 45, 46, 52, 70] n = len(data) k = 2**3 bins = [sorted(data)[int(i*math.ceil(n/k))] for i in range(k)] bins_means = [] for i in range(k): if i == 0: bins_means.append(sum([x for x in data if x <= bins[i]])/len([x for x in data if x <= bins[i]])) elif i == k-1: bins_means.append(sum([x for x in data if x > bins[i]])/len([x for x in data if x > bins[i]])) else: bins_means.append(sum([x for x in data if bins[i-1] < x <= bins[i]])/len([x for x in data if bins[i-1] < x <= bins[i]])) smoothed_data = [] for d in data: for i in range(len(bins)): if d <= bins[i]: smoothed_data.append(bins_means[i]) break print(smoothed_data) print("35对应的值为:", smoothed_data[data.index(35)]) ``` 输出结果: ``` [16.0, 16.0, 16.0, 16.0, 19.666666666666668, 19.666666666666668, 19.666666666666668, 19.666666666666668, 19.666666666666668, 19.666666666666668, 25.0, 25.0, 25.0, 25.0, 30.0, 33.0, 33.0, 35.0, 35.0, 35.0, 35.0, 35.0, 40.0, 45.0, 45.0, 52.0, 70.0] 35对应的值为: 35.0
阅读全文

相关推荐

最新推荐

recommend-type

vgg16.npy,vgg19.npy

VGG16与VGG19是两种著名的卷积神经网络(Convolutional Neural Networks, CNN)模型,由英国牛津大学的Visual Geometry Group(VGG)在2014年的ImageNet Large Scale Visual Recognition Challenge (ILSVRC)中提出。...
recommend-type

【纠错】从零开始学Python数据分析与挖掘.docx

在学习《从零开始学Python数据分析与挖掘》的过程中,我们可能会遇到一些印刷或代码上的错误。以下是书中的若干个纠正: 1. P57:在第二段代码的注释中,应更正为`# 第2至4行,2至5列`,对应的代码为`print(arr2[1:...
recommend-type

使用Python 自动生成 Word 文档的教程

本教程将详细介绍如何使用`python-docx`库来创建Word文档,包括添加文本、表格和图片。 首先,确保已经安装了`python-docx`库,如果没有,可以通过以下命令安装: ```bash pip install python-docx ``` 生成Word...
recommend-type

vb人事管理系统全套(源代码+论文+开题报告+实习报告)(2024zq).7z

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于计算机科学与技术等相关专业,更为适合;
recommend-type

S7-PDIAG工具使用教程及技术资料下载指南

资源摘要信息:"s7upaadk_S7-PDIAG帮助" s7upaadk_S7-PDIAG帮助是针对西门子S7系列PLC(可编程逻辑控制器)进行诊断和维护的专业工具。S7-PDIAG是西门子提供的诊断软件包,能够帮助工程师和技术人员有效地检测和解决S7 PLC系统中出现的问题。它提供了一系列的诊断功能,包括但不限于错误诊断、性能分析、系统状态监控以及远程访问等。 S7-PDIAG软件广泛应用于自动化领域中,尤其在工业控制系统中扮演着重要角色。它支持多种型号的S7系列PLC,如S7-1200、S7-1500等,并且与TIA Portal(Totally Integrated Automation Portal)等自动化集成开发环境协同工作,提高了工程师的开发效率和系统维护的便捷性。 该压缩包文件包含两个关键文件,一个是“快速接线模块.pdf”,该文件可能提供了关于如何快速连接S7-PDIAG诊断工具的指导,例如如何正确配置硬件接线以及进行快速诊断测试的步骤。另一个文件是“s7upaadk_S7-PDIAG帮助.chm”,这是一个已编译的HTML帮助文件,它包含了详细的操作说明、故障排除指南、软件更新信息以及技术支持资源等。 了解S7-PDIAG及其相关工具的使用,对于任何负责西门子自动化系统维护的专业人士都是至关重要的。使用这款工具,工程师可以迅速定位问题所在,从而减少系统停机时间,确保生产的连续性和效率。 在实际操作中,S7-PDIAG工具能够与西门子的S7系列PLC进行通讯,通过读取和分析设备的诊断缓冲区信息,提供实时的系统性能参数。用户可以通过它监控PLC的运行状态,分析程序的执行流程,甚至远程访问PLC进行维护和升级。 另外,该帮助文件可能还提供了与其他产品的技术资料下载链接,这意味着用户可以通过S7-PDIAG获得一系列扩展支持。例如,用户可能需要下载与S7-PDIAG配套的软件更新或补丁,或者是需要更多高级功能的第三方工具。这些资源的下载能够进一步提升工程师解决复杂问题的能力。 在实践中,熟练掌握S7-PDIAG的使用技巧是提升西门子PLC系统维护效率的关键。这要求工程师不仅要有扎实的理论基础,还需要通过实践不断积累经验。此外,了解与S7-PDIAG相关的软件和硬件产品的技术文档,对确保自动化系统的稳定运行同样不可或缺。通过这些技术资料的学习,工程师能够更加深入地理解S7-PDIAG的高级功能,以及如何将这些功能应用到实际工作中去,从而提高整个生产线的自动化水平和生产效率。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

CC-LINK远程IO模块AJ65SBTB1现场应用指南:常见问题快速解决

# 摘要 CC-LINK远程IO模块作为一种工业通信技术,为自动化和控制系统提供了高效的数据交换和设备管理能力。本文首先概述了CC-LINK远程IO模块的基础知识,接着详细介绍了其安装与配置流程,包括硬件的物理连接和系统集成要求,以及软件的参数设置与优化。为应对潜在的故障问题,本文还提供了故障诊断与排除的方法,并探讨了故障解决的实践案例。在高级应用方面,文中讲述了如何进行编程与控制,以及如何实现系统扩展与集成。最后,本文强调了CC-LINK远程IO模块的维护与管理的重要性,并对未来技术发展趋势进行了展望。 # 关键字 CC-LINK远程IO模块;系统集成;故障诊断;性能优化;编程与控制;维护
recommend-type

python 画一个进度条

在Python中,你可以使用`tkinter`库来创建一个简单的进度条。以下是一个基本的例子,展示了如何使用`ttk`模块中的`Progressbar`来绘制进度条: ```python import tkinter as tk from tkinter import ttk # 创建主窗口 root = tk.Tk() # 设置进度条范围 max_value = 100 # 初始化进度条 progress_bar = ttk.Progressbar(root, orient='horizontal', length=200, mode='determinate', maximum=m
recommend-type

Nginx 1.19.0版本Windows服务器部署指南

资源摘要信息:"nginx-1.19.0-windows.zip" 1. Nginx概念及应用领域 Nginx(发音为“engine-x”)是一个高性能的HTTP和反向代理服务器,同时也是一款IMAP/POP3/SMTP服务器。它以开源的形式发布,在BSD许可证下运行,这使得它可以在遵守BSD协议的前提下自由地使用、修改和分发。Nginx特别适合于作为静态内容的服务器,也可以作为反向代理服务器用来负载均衡、HTTP缓存、Web和反向代理等多种功能。 2. Nginx的主要特点 Nginx的一个显著特点是它的轻量级设计,这意味着它占用的系统资源非常少,包括CPU和内存。这使得Nginx成为在物理资源有限的环境下(如虚拟主机和云服务)的理想选择。Nginx支持高并发,其内部采用的是多进程模型,以及高效的事件驱动架构,能够处理大量的并发连接,这一点在需要支持大量用户访问的网站中尤其重要。正因为这些特点,Nginx在中国大陆的许多大型网站中得到了应用,包括百度、京东、新浪、网易、腾讯、淘宝等,这些网站的高访问量正好需要Nginx来提供高效的处理。 3. Nginx的技术优势 Nginx的另一个技术优势是其配置的灵活性和简单性。Nginx的配置文件通常很小,结构清晰,易于理解,使得即使是初学者也能较快上手。它支持模块化的设计,可以根据需要加载不同的功能模块,提供了很高的可扩展性。此外,Nginx的稳定性和可靠性也得到了业界的认可,它可以在长时间运行中维持高效率和稳定性。 4. Nginx的版本信息 本次提供的资源是Nginx的1.19.0版本,该版本属于较新的稳定版。在版本迭代中,Nginx持续改进性能和功能,修复发现的问题,并添加新的特性。开发团队会根据实际的使用情况和用户反馈,定期更新和发布新版本,以保持Nginx在服务器软件领域的竞争力。 5. Nginx在Windows平台的应用 Nginx的Windows版本支持在Windows操作系统上运行。虽然Nginx最初是为类Unix系统设计的,但随着版本的更新,对Windows平台的支持也越来越完善。Windows版本的Nginx可以为Windows用户提供同样的高性能、高并发以及稳定性,使其可以构建跨平台的Web解决方案。同时,这也意味着开发者可以在开发环境中使用熟悉的Windows系统来测试和开发Nginx。 6. 压缩包文件名称解析 压缩包文件名称为"nginx-1.19.0-windows.zip",这表明了压缩包的内容是Nginx的Windows版本,且版本号为1.19.0。该文件包含了运行Nginx服务器所需的所有文件和配置,用户解压后即可进行安装和配置。文件名称简洁明了,有助于用户识别和确认版本信息,方便根据需要下载和使用。 7. Nginx在中国大陆的应用实例 Nginx在中国大陆的广泛使用,证明了其在实际部署中的卓越表现。这包括但不限于百度、京东、新浪、网易、腾讯、淘宝等大型互联网公司。这些网站的高访问量要求服务器能够处理数以百万计的并发请求,而Nginx正是凭借其出色的性能和稳定性满足了这一需求。这些大型网站的使用案例为Nginx带来了良好的口碑,同时也证明了Nginx作为一款服务器软件的领先地位。 总结以上信息,Nginx-1.19.0-windows.zip是一个适用于Windows操作系统的Nginx服务器软件压缩包,提供了高性能的Web服务和反向代理功能,并被广泛应用于中国大陆的大型互联网企业中。用户在使用该压缩包时,可以期待一个稳定、高效且易于配置的服务器环境。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依