帮我写一段稀疏注意力机制的代码,用pytorch架构
时间: 2024-06-10 14:08:16 浏览: 152
好的,为您提供一份基于PyTorch的稀疏注意力机制的代码,如下所示:
``` python
import torch
import torch.nn.functional as F
class SparseAttention(torch.nn.Module):
def __init__(self, in_features, out_features):
super(SparseAttention, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = torch.nn.Parameter(torch.Tensor(in_features, out_features))
self.bias = torch.nn.Parameter(torch.Tensor(out_features))
self.reset_parameters()
def reset_parameters(self):
torch.nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
fan_in, _ = torch.nn.init._calculate_fan_in_and_fan_out(self.weight)
bound = 1 / math.sqrt(fan_in)
torch.nn.init.uniform_(self.bias, -bound, bound)
def forward(self, input, indices, values):
weight = F.linear(input, self.weight, self.bias)
values = values * weight
attn_values = scatter_add(src=values, index=indices, dim=0)
attn_output = attn_values / scatter_add(src=weight, index=indices, dim=0).clamp_min(1e-16)
return attn_output
```
希望能够帮助到您!
阅读全文