深度强化学习ppo算法
时间: 2023-10-11 09:12:57 浏览: 220
深度强化学习PPO算法(python)
4星 · 用户满意度95%
深度强化学习中的Proximal Policy Optimization(PPO)算法是一种用于训练策略的模型无关的算法。PPO通过在每个训练步骤中执行多个轮次的策略更新来提高性能。
PPO算法的核心思想是通过最小化目标函数来进行策略更新,该目标函数结合了策略的更新幅度和分布的相对变化。这种更新方式可以保证策略在每次更新时不会偏离太远,避免训练不稳定性。
PPO算法还使用了一个重要的技术叫做剪切重要性采样比例(Clipped Surrogate Objective),它用于限制策略更新的大小,以防止过大的变化。
与其他算法相比,PPO算法具有以下优势:
1. PPO算法对于超参数选择相对较稳定,不需要过多的手动调整。
2. PPO算法在处理连续动作空间时表现优秀,并且可以轻松扩展到大规模问题。
3. PPO算法具有较好的采样效率,能够充分利用采样数据。
阅读全文