你这段代码对于采样的规则是随机采样吗?

时间: 2023-08-20 22:07:43 浏览: 47
这段代码中,下采样的规则是基于体素化网格的方法,而不是随机采样。具体步骤如下: 1. 首先,计算点云的边界框,并根据期望的下采样点数计算每个维度的体素大小。 2. 然后,根据每个点的坐标计算其所属的体素索引。 3. 遍历每个体素,选择其中的一个点作为代表。这里选择的策略是,对于每个体素索引,只保留第一个遇到的点作为代表。 4. 最后,将代表点的坐标提取出来作为下采样后的点云。 所以,该方法并不是随机采样,而是基于体素化网格的下采样策略。这种方法可以有效地降低点云数据的密度,并保持较好的空间分布。
相关问题

pcd = o3d.io.read_point_cloud("D:\\software\\PMP-Net-main\\PMP-Net-main\\completepcd\\"+txt_path[i]) points = np.array(pcd.points) n = np.random.choice(len(points), 16384, replace=False) # s随机采500个数据,这种随机方式也可以自己定义 pcd.points = o3d.utility.Vector3dVector(points[n]) o3d.io.write_point_cloud("D:\software\PMP-Net-main\PMP-Net-main\complete\\"+txt_path[i], pcd) i=i+1这段代码的随机采样的采样规则是什么?

这段代码是使用随机采样的方式对点云进行采样,采样规则如下: 1. 首先,通过`o3d.io.read_point_cloud`函数从指定路径读取点云数据,并将其保存在变量`pcd`中。 2. 然后,将点云数据转换为NumPy数组,通过`np.array(pcd.points)`获取点的坐标。 3. 接下来,使用`np.random.choice`函数从点的坐标数组中随机选择16384个点(即采样数量为16384),并且设置`replace=False`以确保不重复选择相同的点。 4. 将选定的点的坐标重新赋值给点云对象`pcd`的`points`属性,通过`o3d.utility.Vector3dVector(points[n])`将NumPy数组转换为Open3D点云需要的类型。 5. 最后,使用`o3d.io.write_point_cloud`函数将采样后的点云保存到指定路径下。 综上所述,这段代码通过随机选择点的方式对点云进行采样,每次运行代码都会得到不同的采样结果。采样数量为16384,可以根据需要进行调整。

def random_subsample(pcd, n_points=2048): """ Args: pcd: (B, N, 3) returns: new_pcd: (B, n_points, 3) """ b, n, _ = pcd.shape device = pcd.device batch_idx = torch.arange(b, dtype=torch.long, device=device).reshape((-1, 1)).repeat(1, n_points) idx = torch.cat([torch.randperm(n, dtype=torch.long, device=device)[:n_points].reshape((1, -1)) for i in range(b)], 0) return pcd[batch_idx, idx, :]请说一下这段代码进行采样的采样规则是什么?

这段代码是使用随机采样的方式对输入的点云进行采样,采样的规则如下: 1. 首先,确定输入点云的形状和大小,其中`pcd`是一个形状为 `(B, N, 3)` 的张量,表示 B 组点云数据,每组包含 N 个点,每个点由三个坐标值组成。 2. 然后,确定要采样的点的数量 `n_points`,默认值为 2048。 3. 接下来,根据每组点云的数量 N,生成一个形状为 `(B, n_points)` 的张量 `batch_idx`,其中每个元素的值都是对应组别的索引值。 4. 为了进行随机采样,对于每组点云,使用 `torch.randperm` 函数生成一个随机排列的索引张量 `idx`,其中值的范围为 0 到 N-1,并且生成的索引数量为 `n_points`。 5. 最后,使用 `batch_idx` 和 `idx` 对输入点云张量 `pcd` 进行索引,提取出对应位置的采样点。返回的张量 `new_pcd` 的形状为 `(B, n_points, 3)`,表示采样后的点云数据。 综上所述,这段代码通过在每组点云中随机选择指定数量的点来进行采样,并返回采样后的点云数据。采样的结果是随机的,每次运行代码都可能得到不同的采样结果。

相关推荐

最新推荐

recommend-type

pytorch随机采样操作SubsetRandomSampler()

主要介绍了pytorch随机采样操作SubsetRandomSampler(),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

基于FPGA的等效时间采样

本文介绍了等效时间采样的基本原理、系统实现的具体方案。等效时间采样技术实现了利用低速的ADC器件对宽带模拟信号的采集,降低了系统对ADC器件的要求以及系统实现的复杂度。
recommend-type

合理选择高速ADC实现欠采样

欠采样或违反奈奎斯特(Nyquist)准则是 ADC 应用上经常使用的一种技术。射频(RF)通信和诸如示波器等高性能测试设备就是其中的一些实例。在这个“灰色”地带中经常出现一些困惑,如是否有必要服从 Nyquist 准则,...
recommend-type

使用Python实现正态分布、正态分布采样

今天小编就为大家分享一篇使用Python实现正态分布、正态分布采样,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

STM32 ADC采样

数据的采集、存储与显示是嵌入式系统常见的功能。STM32F103ZET6内部集成了12位的逐次逼近型模拟数字转换器,它有多大18个通道,可测量16个外部和2个内部信号源。
recommend-type

架构师技术分享 支付宝高可用系统架构 共46页.pptx

支付宝高可用系统架构 支付宝高可用系统架构是支付宝核心支付平台的架构设计和系统升级的结果,旨在提供高可用、可伸缩、高性能的支付服务。该架构解决方案基于互联网与云计算技术,涵盖基础资源伸缩性、组件扩展性、系统平台稳定性、可伸缩、高可用的分布式事务处理与服务计算能力、弹性资源分配与访问管控、海量数据处理与计算能力、“适时”的数据处理与流转能力等多个方面。 1. 可伸缩、高可用的分布式事务处理与服务计算能力 支付宝系统架构设计了分布式事务处理与服务计算能力,能够处理高并发交易请求,确保系统的高可用性和高性能。该能力基于互联网与云计算技术,能够弹性地扩展计算资源,满足业务的快速增长需求。 2. 弹性资源分配与访问管控 支付宝系统架构设计了弹性资源分配与访问管控机制,能够根据业务需求动态地分配计算资源,确保系统的高可用性和高性能。该机制还能够提供强大的访问管控功能,保护系统的安全和稳定性。 3. 海量数据处理与计算能力 支付宝系统架构设计了海量数据处理与计算能力,能够处理大量的数据请求,确保系统的高性能和高可用性。该能力基于互联网与云计算技术,能够弹性地扩展计算资源,满足业务的快速增长需求。 4. “适时”的数据处理与流转能力 支付宝系统架构设计了“适时”的数据处理与流转能力,能够实时地处理大量的数据请求,确保系统的高性能和高可用性。该能力基于互联网与云计算技术,能够弹性地扩展计算资源,满足业务的快速增长需求。 5. 安全、易用的开放支付应用开发平台 支付宝系统架构设计了安全、易用的开放支付应用开发平台,能够提供强大的支付应用开发能力,满足业务的快速增长需求。该平台基于互联网与云计算技术,能够弹性地扩展计算资源,确保系统的高可用性和高性能。 6. 架构设计理念 支付宝系统架构设计基于以下几点理念: * 可伸缩性:系统能够根据业务需求弹性地扩展计算资源,满足业务的快速增长需求。 * 高可用性:系统能够提供高可用性的支付服务,确保业务的连续性和稳定性。 * 弹性资源分配:系统能够根据业务需求动态地分配计算资源,确保系统的高可用性和高性能。 * 安全性:系统能够提供强大的安全功能,保护系统的安全和稳定性。 7. 系统架构设计 支付宝系统架构设计了核心数据库集群、应用系统集群、IDC数据库交易系统账户系统V1LB、交易数据库账户数据库业务一致性等多个组件。这些组件能够提供高可用性的支付服务,确保业务的连续性和稳定性。 8. 业务活动管理器 支付宝系统架构设计了业务活动管理器,能够控制业务活动的一致性,确保业务的连续性和稳定性。该管理器能够登记业务活动中的操作,并在业务活动提交时确认所有的TCC型操作的confirm操作,在业务活动取消时调用所有TCC型操作的cancel操作。 9. 系统故障容忍度高 支付宝系统架构设计了高可用性的系统故障容忍度,能够在系统故障时快速恢复,确保业务的连续性和稳定性。该系统能够提供强大的故障容忍度,确保系统的安全和稳定性。 10. 系统性能指标 支付宝系统架构设计的性能指标包括: * 系统可用率:99.992% * 交易处理能力:1.5万/秒 * 支付处理能力:8000/秒(支付宝账户)、2400/秒(银行) * 系统处理能力:处理每天1.5亿+支付处理能力 支付宝高可用系统架构设计了一个高可用、高性能、可伸缩的支付系统,能够满足业务的快速增长需求,确保业务的连续性和稳定性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Matlab画图线型实战:3步绘制复杂多维线型,提升数据可视化效果

![Matlab画图线型实战:3步绘制复杂多维线型,提升数据可视化效果](https://file.51pptmoban.com/d/file/2018/10/25/7af02d99ef5aa8531366d5df41bec284.jpg) # 1. Matlab画图基础 Matlab是一款强大的科学计算和数据可视化软件,它提供了一系列用于创建和自定义图形的函数。本章将介绍Matlab画图的基础知识,包括创建画布、绘制线型以及设置基本属性。 ### 1.1 创建画布 在Matlab中创建画布可以使用`figure`函数。该函数创建一个新的图形窗口,并返回一个图形句柄。图形句柄用于对图形进
recommend-type

基于R软件一个实际例子,实现空间回归模型以及包括检验和模型选择(数据集不要加州的,附代码和详细步骤,以及数据)

本文将使用R软件和Boston房价数据集来实现空间回归模型,并进行检验和模型选择。 数据集介绍: Boston房价数据集是一个观测500个社区的房屋价格和其他16个变量的数据集。每个社区的数据包含了包括犯罪率、房产税率、学生-老师比例等特征,以及该社区的房价中位数。该数据集可用于探索房价与其他变量之间的关系,以及预测一个新社区的房价中位数。 数据集下载链接:https://archive.ics.uci.edu/ml/datasets/Housing 1. 导入数据集和必要的包 ```r library(spdep) # 空间依赖性包 library(ggplot2) # 可
recommend-type

WM9713 数据手册

WM9713 数据手册 WM9713 是一款高度集成的输入/输出设备,旨在为移动计算和通信应用提供支持。下面是 WM9713 的详细知识点: 1. 设备架构:WM9713 采用双 CODEC 运算架构,支持 Hi-Fi 立体声编解码功能通过 AC 链接口,同时还支持语音编解码功能通过 PCM 类型的同步串行端口(SSP)。 2. 音频功能:WM9713 提供了一个第三个 AUX DAC,可以用于生成监督音、铃声等不同采样率的音频信号,独立于主编解码器。 3. 触摸面板接口:WM9713 可以直接连接到 4 线或 5 线触摸面板,减少系统中的总组件数量。 4. 音频连接:WM9713 支持多种音频连接方式,包括立体声麦克风、立体声耳机和立体声扬声器。且可以使用无电容连接到耳机、扬声器和耳机,减少成本和 PCB 面积。 5. 模拟输入/输出:WM9713 提供了多个模拟输入和输出引脚,用于无缝集成与模拟连接的无线通信设备。 6. 设备控制:所有设备功能都可以通过寄存器访问来控制,实现了灵活的设备管理和配置。 7. 功率管理:WM9713 采用低功率设计,降低系统的功率消耗,提高系统的可靠性和续航能力。 8. 工业应用:WM9713 广泛应用于移动计算、通信、消费电子等领域,满足不同行业的需求和应用场景。 9. 技术参数:WM9713 的技术参数包括工作温度、供电电压、时钟频率、数据传输速率等,满足不同应用场景的需求。 10. 应用场景:WM9713 可以应用于智能手机、平板电脑、笔记本电脑、智能家居设备等移动计算和通信产品,满足不同行业的需求和应用场景。 WM9713 是一款功能强大、灵活性高的输入/输出设备,广泛应用于移动计算和通信领域,为不同行业的应用场景提供了可靠的解决方案。