pd.read_csv读取csv文件数据targets
时间: 2023-12-09 10:34:45 浏览: 143
在问题中提到了pd.read_csv读取csv文件数据targets,但是这个问题中的引用内容与问题本身似乎没有关系。因此,我将回答关于pd.read_csv的问题,并提供相关的代码示例。
pd.read_csv是一个用于读取csv文件的函数。它可以将csv文件中的数据读取到一个pandas DataFrame对象中。以下是一个使用pd.read_csv读取csv文件的示例代码:
```python
import pandas as pd
# 读取csv文件
df = pd.read_csv('data.csv')
# 打印DataFrame对象
print
相关问题
def read_data_bananas(is_train=True): """读取香蕉检测数据集中的图像和标签""" data_dir = d2l.download_extract('banana-detection') csv_fname = os.path.join(data_dir, 'bananas_train' if is_train else 'bananas_val', 'label.csv') csv_data = pd.read_csv(csv_fname) csv_data = csv_data.set_index('img_name') images, targets = [], [] for img_name, target in csv_data.iterrows(): images.append(image.imread( os.path.join(data_dir, 'bananas_train' if is_train else 'bananas_val', 'images', f'{img_name}'))) # 这里的target包含(类别,左上角x,左上角y,右下角x,右下角y), # 其中所有图像都具有相同的香蕉类(索引为0) targets.append(list(target)) return images, np.expand_dims(np.array(targets), 1) / 256
这段代码实现了读取香蕉检测数据集中的图像和标注信息的功能。具体来说,该函数首先通过 `d2l.download_extract()` 函数获取数据集的路径,然后根据 `is_train` 参数指示的训练集或验证集路径,读取对应的标注文件 `label.csv` 中的数据。接下来,将 `img_name` 列设置为数据框的行索引,方便后续的数据访问和操作。
然后,对于每张图像,使用 `matplotlib.image.imread()` 函数读取图像数据,并将其存储在 `images` 列表中。同时,将该图像的标注信息存储在 `targets` 列表中,该列表中的每个元素都是一个包含类别和检测框坐标的列表。需要注意的是,由于所有图像都具有相同的香蕉类,因此这个类别信息在代码中并没有被使用。
最后,将 `targets` 列表转换为 NumPy 数组,并将其归一化到 [0, 1] 的范围内,方便后续的模型训练。最终,该函数返回了读取到的图像数据和标注信息。
写一个python Flask销售预测系统中,有一个suanfa.py文件:先读取shuju.csv (共有24条数据,包含Date(object)(yyyy/mm)和TotalPrice(float64)两个属性), 然后用scaler将TotalPrice进行归一化处理,之后定义一个函数def split_data(data, lookback): 将数据集划分为测试集(0.2)和训练集(0.8),data_raw = data.to_numpy(),lookback = 4, 然后再将划分完成后的测试集和训练集转换为PyTorch张量,然后定义超参数, 定义算法模型model=LSTM()、损失函数和优化器(Adam)然后训练模型求出MSE, 将模型保存;有一个predict.html文件:里面有一个日期选择框和一个销售额预测按钮,用户选择好年月后 点击按钮系统就开始调用保存好的模型来预测所选月份的销售额,然后将预测结果返回到前端页面日期选择框下面的结果返回 框中;有一个app.py文件:定义路径。用flask和bootstrap、LayUI写出完整详细代码
suanfa.py代码:
```python
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
from sklearn.preprocessing import MinMaxScaler
# 读取数据
data = pd.read_csv('shuju.csv')
# 归一化处理
scaler = MinMaxScaler()
data['TotalPrice'] = scaler.fit_transform(data['TotalPrice'].values.reshape(-1, 1))
# 划分数据集
def split_data(data, lookback):
data_raw = data.to_numpy()
data = []
for index in range(len(data_raw) - lookback):
data.append(data_raw[index: index + lookback])
data = np.array(data)
test_size = int(np.round(0.2 * data.shape[0]))
train_size = data.shape[0] - test_size
x_train = torch.tensor(data[:train_size, :-1, :])
y_train = torch.tensor(data[:train_size, -1, :])
x_test = torch.tensor(data[train_size:, :-1, :])
y_test = torch.tensor(data[train_size:, -1, :])
return x_train, y_train, x_test, y_test
# 超参数
input_size = 1
hidden_size = 32
num_layers = 2
output_size = 1
num_epochs = 100
learning_rate = 0.01
# 定义模型
class LSTM(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, output_size):
super(LSTM, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
out, _ = self.lstm(x, (h0, c0))
out = out[:, -1, :]
out = self.fc(out)
return out
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = LSTM(input_size, hidden_size, num_layers, output_size).to(device)
# 损失函数和优化器
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# 训练模型
x_train, y_train, x_test, y_test = split_data(data, lookback=4)
for epoch in range(num_epochs):
inputs = x_train.to(device)
targets = y_train.to(device)
outputs = model(inputs)
loss = criterion(outputs, targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (epoch + 1) % 10 == 0:
print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')
# 保存模型
torch.save(model.state_dict(), 'model.pt')
```
predict.html代码:
```html
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>销售预测系统</title>
<!-- 引入layui样式 -->
<link rel="stylesheet" href="https://www.layuicdn.com/layui/css/layui.css">
</head>
<body>
<div class="layui-container">
<div class="layui-row">
<div class="layui-col-md-offset3 layui-col-md-6">
<form class="layui-form">
<div class="layui-form-item">
<label class="layui-form-label">选择日期</label>
<div class="layui-input-block">
<input type="text" name="date" id="date" placeholder="yyyy/mm" autocomplete="off" class="layui-input">
</div>
</div>
<div class="layui-form-item">
<div class="layui-input-block">
<button type="button" class="layui-btn" onclick="predict()">销售额预测</button>
</div>
</div>
</form>
</div>
</div>
<div class="layui-row">
<div class="layui-col-md-offset3 layui-col-md-6">
<div class="layui-form-item">
<label class="layui-form-label">销售额预测结果</label>
<div class="layui-input-block">
<input type="text" name="result" id="result" readonly="readonly" autocomplete="off" class="layui-input">
</div>
</div>
</div>
</div>
</div>
<!-- 引入layui JS -->
<script src="https://www.layuicdn.com/layui/layui.js"></script>
<script>
function predict() {
var date = $("#date").val();
$.ajax({
type: "POST",
url: "/predict",
data: {"date": date},
success: function (data) {
$("#result").val(data);
}
});
}
</script>
</body>
</html>
```
app.py代码:
```python
from flask import Flask, render_template, request, jsonify
import pandas as pd
import numpy as np
import torch
from sklearn.preprocessing import MinMaxScaler
from suanfa import LSTM
app = Flask(__name__)
# 加载模型
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = LSTM(input_size=1, hidden_size=32, num_layers=2, output_size=1).to(device)
model.load_state_dict(torch.load('model.pt'))
# 读取数据并归一化处理
data = pd.read_csv('shuju.csv')
scaler = MinMaxScaler()
data['TotalPrice'] = scaler.fit_transform(data['TotalPrice'].values.reshape(-1, 1))
# 定义预测函数
def predict(date):
# 获取前4个月的销售额数据
last_4_month = []
for i in range(4):
year, month = date.split('/')
month = int(month) - i
if month <= 0:
year = str(int(year) - 1)
month = 12 + month
if month < 10:
month = '0' + str(month)
else:
month = str(month)
date_str = year + '/' + month
last_4_month.append(data[data['Date'] == date_str]['TotalPrice'].values[0])
last_4_month.reverse()
input_data = torch.tensor(last_4_month).view(1, 4, 1).float().to(device)
# 模型预测
with torch.no_grad():
output = model(input_data)
output = scaler.inverse_transform(output.cpu().numpy())[0][0]
return round(output, 2)
# 定义路由
@app.route('/')
def index():
return render_template('predict.html')
@app.route('/predict', methods=['POST'])
def predict_result():
date = request.form.get('date')
result = predict(date)
return jsonify(result)
if __name__ == '__main__':
app.run(debug=True)
```
在运行完以上代码后,通过访问http://localhost:5000/即可进入销售预测系统。用户选择好年月后点击预测按钮,系统就会调用保存好的模型来预测所选月份的销售额,并将预测结果显示在页面下方的结果返回框中。
阅读全文