基于tensorflow的transformer模型代码
时间: 2023-10-28 20:07:20 浏览: 136
Transformer是一种非常流行的神经网络模型,用于自然语言处理任务,如机器翻译、文本摘要等。TensorFlow是一个非常流行的深度学习框架,提供了丰富的API和工具,可以方便地实现Transformer模型。
下面是一个基于TensorFlow实现Transformer模型的代码示例:
```python
import tensorflow as tf
from tensorflow.keras.layers import Input, Dense, Dropout, LayerNormalization
from tensorflow.keras.layers import MultiHeadAttention, Embedding, Flatten
from tensorflow.keras.models import Model
def transformer_model(vocab_size, max_seq_len, num_heads, embedding_dim, dense_dim, dropout_rate):
# Input layer
inputs = Input(shape=(max_seq_len,), dtype=tf.int32)
# Embedding layer
embeddings = Embedding(input_dim=vocab_size, output_dim=embedding_dim)(inputs)
# Positional encoding
pos_encoding = positional_encoding(max_seq_len, embedding_dim)
embeddings = embeddings * tf.math.sqrt(tf.cast(embedding_dim, tf.float32))
embeddings = embeddings + pos_encoding
# Dropout layer
embeddings = Dropout(rate=dropout_rate)(embeddings)
# Transformer blocks
for i in range(num_heads):
# Multi-head attention layer
attn_output = MultiHeadAttention(num_heads=num_heads, key_dim=embedding_dim)(embeddings, embeddings)
# Add & normalize layer
attn_output = LayerNormalization(epsilon=1e-6)(embeddings + attn_output)
# Feedforward layer
dense_output = Dense(units=dense_dim, activation='relu')(attn_output)
dense_output = Dense(units=embedding_dim)(dense_output)
# Add & normalize layer
dense_output = LayerNormalization(epsilon=1e-6)(attn_output + dense_output)
# Dropout layer
dense_output = Dropout(rate=dropout_rate)(dense_output)
# Residual connection
embeddings = dense_output + embeddings
# Flatten layer
flatten = Flatten()(embeddings)
# Output layer
outputs = Dense(units=vocab_size, activation='softmax')(flatten)
# Model
model = Model(inputs=inputs, outputs=outputs)
return model
def positional_encoding(max_seq_len, embedding_dim):
pos_encoding = np.zeros((max_seq_len, embedding_dim))
for pos in range(max_seq_len):
for i in range(embedding_dim):
if i % 2 == 0:
pos_encoding[pos, i] = np.sin(pos / (10000 ** (i / embedding_dim)))
else:
pos_encoding[pos, i] = np.cos(pos / (10000 ** ((i - 1) / embedding_dim)))
return tf.constant(pos_encoding, dtype=tf.float32)
```
这个代码实现了一个Transformer模型,包括输入层、嵌入层、位置编码、多头注意力层、前馈层、残差连接、层归一化等组件。你可以根据自己的需求修改模型的超参数,如词汇表大小、最大序列长度、注意力头数、嵌入维度、前馈层维度、dropout率等。
阅读全文