ERROR:torch.distributed.elastic.multiprocessing.api:failed (exitcode: 1) local_rank: 0 (pid: 1447037) of binary: /usr/bin/python
时间: 2023-08-02 13:10:18 浏览: 5572
回答: 出现ERROR: torch.distributed.elastic.multiprocessing.api:failed (exitcode: 1) local_rank: 0 (pid: 1447037) of binary: /usr/bin/python错误的原因可能是由于参数设置不一致导致的。根据引用\[1\]中的信息,可能是由于使用了不一致的参数"--local_rank"和"--local-rank"导致的。解决方法是确保参数设置一致,例如在torch2.0版本的launch.py中使用"--local-rank",而在yolov7源码中也使用"--local-rank"。另外,根据引用\[2\]中的信息,还可能是由于在分布式训练时使用了sampler,并且dataloader的shuffle参数设置为True,而这两者是相冲突的。因此,在分布式训练时,可以将dataloader的shuffle参数设置为False。如果以上方法都不起作用,可以尝试在具有更大CPU内存的另一块GPU上运行模型,如引用\[3\]所述。
#### 引用[.reference_title]
- *1* [解决报错:train.py: error: unrecognized arguments: --local-rank=1 ERROR:torch.distributed.elastic....](https://blog.csdn.net/weixin_43960370/article/details/130276398)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item]
- *2* [【解决】pytorch单机多卡问题:ERROR: torch.distributed.elastic.multiprocessing.api:failed](https://blog.csdn.net/Caesar6666/article/details/126893353)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item]
- *3* [pytorch报错 ERROR:torch.distributed.elastic.multiprocessing.api:failed (exitcode: 1) local_rank:....](https://blog.csdn.net/xiangyong58/article/details/131395234)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文