最小二乘支持向量机svm
时间: 2023-10-08 11:04:23 浏览: 107
最早的最小二乘支持向量机
最小二乘支持向量机(Least Squares Support Vector Machine,简称LSSVM)是一种支持向量机(SVM)的变体算法。与传统的SVM算法相比,LSSVM使用了等式约束而不是不等式约束,并且对每个样本点采用了等式约束,不对松弛向量施加任何约束。这使得LSSVM在解决最小二乘问题时更加简化,并且避免了传统SVM的稀疏性问题。
LSSVM主要用于回归任务。它通过解决等式约束和最小二乘问题来建立回归模型,其目标是寻找一个超平面,使得训练样本点到该超平面的预测值与真实值之间的误差最小化。在LSSVM中,通过使用最小二乘法来优化目标函数,从而得到回归模型的参数。
总结起来,最小二乘支持向量机(LSSVM)是一种将等式约束和最小二乘法结合起来的支持向量机算法变体。它主要用于回归任务,并通过解决等式约束和最小二乘问题来建立回归模型。LSSVM相比传统SVM算法具有简化计算和避免稀疏性问题的优势。
阅读全文