最小二乘支持向量机回归
时间: 2023-10-20 15:09:15 浏览: 192
在线稀疏最小二乘支持向量机回归的研究
最小二乘支持向量机回归(LSSVR)是一种非常流行的回归算法,它是基于支持向量机(SVM)的思想发展而来的。与传统的SVM分类算法不同,LSSVR是一种回归算法,它的目标是通过寻找一个最优的超平面来拟合数据,使得预测值与真实值之间的误差最小化。LSSVR的优点在于它可以处理高维数据,并且对于噪声和异常值具有较好的鲁棒性。
LSSVR的核心思想是将输入空间映射到一个高维特征空间中,然后在特征空间中寻找一个最优的超平面来拟合数据。与传统的SVM分类算法不同,LSSVR使用了一个非常简单的损失函数,即平方误差损失函数。通过最小化平方误差损失函数,LSSVR可以得到一个最优的超平面,从而实现回归任务。
与传统的SVM分类算法类似,LSSVR也需要选择一个合适的核函数来进行特征映射。常用的核函数包括线性核、多项式核、高斯核等。在选择核函数时,需要根据具体问题的特点进行选择。
阅读全文