if t>DS if mod(t,DS)==0 && (Pbest(t-DS+1)-Pbest(t))<1e-020 %如果连续DS代数,群体中的最优没有明显变优,则进行免疫. %在函数测试的过程中发现,经过一定代数的更新,个体最优不完全相等,但变化非常非常小, for i=1:N %先计算出个体最优的和 Psum=Psum+p(i); end for i=1:N %免疫程序 for j=1:N %计算每个个体与个体i的距离 distance(j)=abs(p(j)-p(i)); end num=0; for j=1:N %计算与第i个个体距离小于minD的个数 if distance(j)<minD num=num+1; end end PF(i)=p(N-i+1)/Psum; %计算适应度概率 PD(i)=num/N; %计算个体浓度 a=rand; %随机生成计算替换概率的因子 PR(i)=a*PF(i)+(1-a)*PD(i); %计算替换概率 end
时间: 2024-02-10 08:25:47 浏览: 79
这部分代码是粒子群优化算法中的免疫程序,用于在连续一定代数内群体中的最优解没有明显变优时进行免疫操作。
首先,代码中通过判断条件 `mod(t,DS)==0 && (Pbest(t-DS+1)-Pbest(t))<1e-020` 来确定是否进行免疫操作。条件中,DS表示一定的连续代数,Pbest(t)表示第t次迭代时的全局最优适应度值。
如果满足条件,则进行免疫操作。免疫操作的具体步骤如下:
1. 计算个体最优适应度值之和:使用循环遍历每个粒子的个体最优适应度值p(i),并将其累加到Psum变量中。
2. 免疫程序:对每个粒子进行免疫操作。具体步骤如下:
a. 计算个体与其他个体之间的距离:使用循环计算每个粒子与第i个粒子之间的距离,距离定义为适应度值之间的差的绝对值。
b. 计算与第i个粒子距离小于minD的个数:使用循环统计距离小于minD的粒子个数,其中minD是一个阈值。
c. 计算适应度概率PF:将个体最优适应度值按照降序排列,并将p(N-i+1)除以个体最优适应度值之和Psum,得到适应度概率PF(i)。
d. 计算个体浓度PD:将距离小于minD的粒子个数num除以总粒子数N,得到个体浓度PD(i)。
e. 计算替换概率PR:随机生成一个因子a,并计算替换概率PR(i)。替换概率是适应度概率PF和个体浓度PD的线性组合,可以根据具体情况调整a的取值范围。
通过免疫程序,可以根据个体最优解的变化情况和个体之间的距离来调整粒子的替换概率,以提高算法的多样性和全局搜索能力。
相关问题
function [duty, iterations] = PSOMPPT(vpv, ipv) persistent p u dc dbest counter iteration iter_max num; if isempty(num) num = 10; end if isempty(p) p = zeros(1, num); dbest = 0; counter = 0; u = 1; iteration = 0; iter_max = 15; end if isempty(dc) dc = linspace(0, 0.7, num); end iterations = iteration; if iterations <= iter_max if (counter >= 1 && counter <= 100) duty = dc(u); counter = counter + 1; return; end if (u >= 1 && u <= num) p(u) = vpv * ipv; end u = u + 1; if (u < num + 1) duty = dc(u); counter = 1; return; end u = 1; counter = 1; iteration = iteration + 1; w = 0.729; c1 = 1.494; c2 = 1.494; dim = num; swarm_size = 50; max_iter = 100; min_bound = zeros(1, dim); max_bound = ones(1, dim); x = repmat(min_bound, swarm_size, 1) + rand(swarm_size, dim) .* (repmat(max_bound, swarm_size, 1) - repmat(min_bound, swarm_size, 1)); v = rand(swarm_size, dim); pbest = x; for i = 1:swarm_size if p(i) > pbest(i) pbest(i) = p(i); end end [gbestval, gbestid] = max(pbest); gbest = repmat(min_bound, 1, dim) + rand(1, dim) .* (repmat(max_bound, 1, dim) - repmat(min_bound, 1, dim)); for iter = 1:max_iter for i = 1:swarm_size v(i, :) = w * v(i, :) + c1 * rand(1, dim) .* (pbest(i, :) - x(i, :)) + c2 * rand(1, dim) .* (gbest - x(i, :)); x(i, :) = x(i, :) + v(i, :); for j = 1:dim if x(i, j) > max_bound(j) x(i, j) = max_bound(j); elseif x(i, j) < min_bound(j) x(i, j) = min_bound(j); end end p(i) = vpv * ipv * x(i, u); if p(i) > pbest(i) pbest(i, :) = x(i, :); end end [cur_bestval, cur_bestid] = max(pbest); if cur_bestval > gbestval gbestval = cur_bestval; gbest = pbest(cur_bestid, :); end end dbest = gbest(u); dc1 = EPOUpdateDuty(dbest, dc, iteration, iter_max, num); dc = dc1; duty = dc(u); return; else duty = dbest; return; endendfunction D = EPOUpdateDuty(dbest, d, iter, iter_max, num) D = zeros(1, num); dup = zeros(1, num); persistent s; if isempty(s) s = 0.5; end res = 0.01; if iter > iter_max iter = iter_max; end eta = (res / s) ^ (iter / iter_max); s = s * eta; for i = 1:num deltaD = s * (2 * rand() - 1); if d(i) == dbest dup(i) = dbest; else dup(i) = dbest + deltaD; end if dup(i) > 1 dup(i) = 1; end if dup(i) < 0 dup(i) = 0; end end D = dup;end
在这段代码中,gbest = pbest(cur_bestid, :) 这一行代码出现了错误。这是因为 pbest(cur_bestid, :) 返回的是一个行向量,而 gbest 是一个行向量,所以两者无法匹配。可以尝试修改这一行代码为 gbest = pbest(cur_bestid, :); (去掉行尾的冒号)来解决问题。
function [duty,iterations] = TSOMPPT(vpv,ipv) persistent p u dc dbest counter iteration iter_max num; if isempty(num) num=10; end if isempty(p) p=zeros(1,num); dbest=0; counter=0; u=1; iteration=0; iter_max=15; end if isempty(dc) dc=linspace(0,0.7,num); end iterations=iteration; if iterations<=iter_max if(counter>=1 && counter<=100) duty=dc(u); counter=counter+1; return; end if(u>=1 && u<=num) p(u)=vpv*ipv; end u=u+1; if(u<num+1) duty=dc(u); counter=1; return; End u=1; counter=1; iteration=iteration+1; [m,i]=max(p); dbest=dc(i); dc1=EPOUpdateDuty(dbest,dc,iteration,iter_max,num); dc=dc1; duty=dc(u); return; Else duty=dbest; return; End end function D=EPOUpdateDuty(dbest,d,iter,iter_max,num) D=zeros(1,num); dup=zeros(1,num); persistent s; if isempty(s) s=0.5; End res=0.01; if iter>iter_max iter=iter_max; End eta=(res/s)^(iter/iter_max); s=s*eta for i=1:num deltaD=s*(2*rand()-1); if d(i)==dbest dup(i)=dbest; Else dup(i)=dbest+deltaD; End if dup(i)>1 dup(i)=1; End if dup(i)<0 dup(i)=0; End End D=dup; end
这是一个基于阈值逐步逼近的迭代算法,用于优化太阳能逆变器的PWM占空比。代码中使用了一个数组p来记录每个占空比下的功率输出,然后在每次迭代中更新占空比数组dc,并重新计算功率输出。在迭代的过程中,记录当前最优的占空比dbest,并以此为基础,不断更新dc数组。
为了将其改写成基于粒子群优化算法,我们可以参考以下步骤:
1. 首先,我们需要将代码中的迭代次数iter_max设定为一个较大的值,例如100。
2. 我们需要引入粒子群算法的相关参数,包括粒子个数,惯性权重w,加速常数c1和c2。我们可以将粒子数设为10,并将w设为0.72,c1和c2都设为1.49。
3. 我们需要为每个粒子引入速度v和个体最优位置pbest。这些变量应该被初始化为0或者与原代码中的变量保持一致。
4. 在每次迭代中,使用粒子群算法更新每个粒子的位置和速度,以及记录全局最优位置gbest和个体最优位置pbest。
5. 在每次迭代结束后,使用pbest数组更新dc数组,作为下一次迭代的基础。
下面是基于粒子群优化算法的改写代码:
阅读全文
相关推荐
















