排列熵算法python
时间: 2024-09-30 18:12:40 浏览: 52
sample entropy_加权算法_排列熵_加权_熵_加权排列熵.zip
5星 · 资源好评率100%
排列熵(Permutation Entropy),也称序熵,是一种衡量时间序列复杂度的统计量,常用于信号分析、生物信息学等领域。在Python中,你可以使用`scikit-learn`库中的`entropy`函数结合自定义计算方法来实现排列熵。
以下是一个简单的步骤来计算排列熵:
1. 导入必要的库:
```python
import numpy as np
from sklearn.feature_extraction import entropy
```
2. 准备时间序列数据:
```python
data = ... # 你需要处理的时间序列数组
```
3. 确定窗口大小和延迟(滑动步长):
```python
window_size = 5
delay = 1
```
4. 计算排列熵:
```python
def permutation_entropy(seq, window_size=window_size, delay=delay):
seqs = [seq[i:i+window_size] for i in range(len(seq) - window_size + 1)]
seqs = [np.roll(x, -delay) for x in seqs]
seqs = [x[:-delay] for x in seqs]
seq_lengths = [len(s) for s in seqs]
max_length = max(seq_lengths)
unique_orders = []
for s in seqs:
if len(s) == max_length:
unique_orders.append(tuple(s))
unique_orders_counts = np.bincount([ord(o) for o in unique_orders])
prob_dist = unique_orders_counts / len(seqs)
return entropy(prob_dist, base=np.log(window_size))
permutation_entropy_value = permutation_entropy(data)
```
阅读全文