什么是softmax函数?
时间: 2024-06-17 13:03:05 浏览: 93
python softmax函数
softmax函数是一种用于多分类问题的激活函数,其主要作用是将一个K维的实数向量压缩(归一化)为另一个K维的实数向量,这个压缩后的向量的每个元素的范围都在0到1之间,且所有元素的和为1。该函数通常在神经网络中用于预测多个类别的概率分布。相比于argmax函数,softmax函数被称为一种平滑的可微的选择,因此softmax函数有时候被更明确地称之为softargmax函数。和softmax函数一样,argmax函数进行vector运算,转换每一个数值到0,除了最大值之外,最大值被转换为1。 [^1]
以下是一个使用Python实现softmax函数的例子:
```python
import numpy as np
def softmax(x):
return np.exp(x) / np.sum(np.exp(x))
# 示例
x = np.array([1.0, 2.0, 3.0])
print(softmax(x)) # 输出:[0.09003057 0.24472847 0.66524096]
```
阅读全文