def create_dataset(dataset, look_back): #这里的look_back与timestep相同 dataX, dataY = [], [] for i in range(len(dataset)-look_back-1): a = dataset[i:(i+look_back)] dataX.append(a) dataY.append(dataset[i + look_back]) return numpy.array(dataX),numpy.array(dataY) #训练数据太少 look_back并不能过大 look_back = 1 trainX,trainY = create_dataset(trainlist,look_back) testX,testY = create_dataset(testlist,look_back)
时间: 2024-04-19 17:25:49 浏览: 343
根据您的代码,您定义了一个名为 `create_dataset` 的函数,用于创建训练数据集和测试数据集。这个函数接受两个参数,`dataset` 是一个数据集,`look_back` 是一个整数,表示时间步长。
在函数内部,您创建了两个空列表 `dataX` 和 `dataY`,用于保存输入数据和对应的输出数据。然后,您使用一个循环遍历数据集中的每个样本(从索引 0 到 `len(dataset)-look_back-1`)。
在每次迭代中,您从数据集中提取长度为 `look_back` 的子序列,并将其添加到 `dataX` 列表中。然后,您提取对应的下一个时间步的值,并将其添加到 `dataY` 列表中。
最后,您将 `dataX` 和 `dataY` 转换为 numpy 数组,并将它们作为函数的返回值。
在接下来的代码中,您使用 `create_dataset` 函数将训练集和测试集分别转换为输入和输出序列。在这里,`look_back` 的值为 1,表示每个输入序列只包含一个时间步的数据。
希望这能帮助您理解代码的功能。如果您有任何其他问题,请随时提问。
阅读全文