变分自编码器python
时间: 2023-09-13 22:07:10 浏览: 166
变分自编码器和条件变分自编码器python实现源码+说明.zip
在Python中,您可以使用深度学习框架如TensorFlow或PyTorch来实现变分自编码器(Variational Autoencoder,VAE)。下面是一个使用PyTorch实现VAE的简单示例:
```python
import torch
import torch.nn as nn
class VAE(nn.Module):
def __init__(self, input_dim, hidden_dim, latent_dim):
super(VAE, self).__init__()
self.encoder = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
nn.ReLU(),
)
self.fc_mu = nn.Linear(hidden_dim, latent_dim)
self.fc_logvar = nn.Linear(hidden_dim, latent_dim)
self.decoder = nn.Sequential(
nn.Linear(latent_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, input_dim),
nn.Sigmoid(),
)
def reparameterize(self, mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
z = mu + eps * std
return z
def forward(self, x):
x = self.encoder(x)
mu = self.fc_mu(x)
logvar = self.fc_logvar(x)
z = self.reparameterize(mu, logvar)
reconstructed_x = self.decoder(z)
return reconstructed_x, mu, logvar
# 示例使用MNIST数据集
# 假设输入维度为784(28x28的图像展开成向量),隐藏层维度为400,潜在空间维度为20
input_dim = 784
hidden_dim = 400
latent_dim = 20
# 创建VAE模型实例
model = VAE(input_dim, hidden_dim, latent_dim)
# 定义损失函数
criterion = nn.BCELoss(reduction='sum')
# 定义优化器
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# 训练模型
def train_vae(model, optimizer, criterion, num_epochs, data_loader):
model.train()
for epoch in range(num_epochs):
total_loss = 0
for batch_idx, (data, _) in enumerate(data_loader):
data = data.view(-1, input_dim)
optimizer.zero_grad()
reconstructed_data, mu, logvar = model(data)
# 计算重构损失
reconstruction_loss = criterion(reconstructed_data, data)
# 计算KL散度损失
kl_loss = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
# 总损失为重构损失和KL散度损失之和
loss = reconstruction_loss + kl_loss
total_loss += loss.item()
loss.backward()
optimizer.step()
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, total_loss / len(data_loader.dataset)))
# 示例使用MNIST数据集进行训练
from torchvision import datasets, transforms
# 数据预处理
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
# 加载MNIST数据集
train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=128, shuffle=True)
# 设置训练参数并训练模型
num_epochs = 10
train_vae(model, optimizer, criterion, num_epochs, train_loader)
```
以上是一个简单的使用PyTorch实现VAE的示例,其中包括模型定义、损失函数定义、优化器设置和训练过程。您可以根据自己的需求进行修改和扩展。希望对您有帮助!
阅读全文