给定一个无序序列,编程实现平均查找长度最小的二叉排序树的构造,并编写二叉排序树查找函数。
时间: 2025-01-03 17:05:06 浏览: 16
要构造一个平均查找长度最小的二叉排序树,可以使用动态规划的方法。具体步骤如下:
1. **定义子问题**:设`dp[i][j]`表示从序列的第`i`个元素到第`j`个元素构造的二叉排序树的最小平均查找长度。
2. **状态转移方程**:对于每个子问题`dp[i][j]`,我们选择一个根节点`k`,然后将序列分成两部分,左子树和右子树。状态转移方程为:
\[
dp[i][j] = \min_{i \leq k \leq j} \left( \sum_{m=i}^{j} f(m, k) + dp[i][k-1] + dp[k+1][j] \right)
\]
其中,`f(m, k)`表示节点`m`到根节点`k`的深度。
3. **边界条件**:当`i > j`时,`dp[i][j] = 0`。
下面是具体的实现代码:
```python
def optimal_bst(keys, freq):
n = len(keys)
dp = [[0] * (n+1) for _ in range(n+1)]
for i in range(n):
dp[i][i] = freq[i]
for length in range(2, n+1):
for i in range(n - length + 1):
j = i + length - 1
dp[i][j] = float('inf')
total_freq = sum(freq[m] for m in range(i, j+1))
for k in range(i, j+1):
left = dp[i][k-1] if k > i else 0
right = dp[k+1][j] if k < j else 0
dp[i][j] = min(dp[i][j], left + right + total_freq)
return dp[0][n-1]
def build_bst(keys, freq):
n = len(keys)
dp = [[0] * (n+1) for _ in range(n+1)]
root = [[0] * (n+1) for _ in range(n+1)]
for i in range(n):
dp[i][i] = freq[i]
for length in range(2, n+1):
for i in range(n - length + 1):
j = i + length - 1
dp[i][j] = float('inf')
total_freq = sum(freq[m] for m in range(i, j+1))
for k in range(i, j+1):
left = dp[i][k-1] if k > i else 0
right = dp[k+1][j] if k < j else 0
if left + right + total_freq < dp[i][j]:
dp[i][j] = left + right + total_freq
root[i][j] = k
return root
def construct_bst(keys, root, i, j):
if i > j:
return None
if i == j:
return TreeNode(keys[i])
k = root[i][j]
node = TreeNode(keys[k])
node.left = construct_bst(keys, root, i, k-1)
node.right = construct_bst(keys, root, k+1, j)
return node
def search_bst(node, key):
if node is None:
return False
if key == node.val:
return True
elif key < node.val:
return search_bst(node.left, key)
else:
return search_bst(node.right, key)
class TreeNode:
def __init__(self, val):
self.val = val
self.left = None
self.right = None
# 示例使用
keys = [10, 12, 20, 30, 25]
freq = [34, 8, 50, 10, 25]
root = build_bst(keys, freq)
bst_root = construct_bst(keys, root, 0, len(keys)-1)
print(search_bst(bst_root, 25)) # 输出: True
```
阅读全文