用python编写代码,实现基于Hough变换的“矩形矫正”,和瓶子盖轮廓提取
时间: 2024-10-24 12:06:58 浏览: 64
在Python中,你可以使用OpenCV库来实现基于Hough变换的矩形矫正和瓶子盖轮廓提取。Hough变换是一种用于检测图像中的直线、圆或其他形状特征的经典计算机视觉技术。
首先,确保已经安装了`opencv-python`库,如果没有可以使用pip进行安装:
```bash
pip install opencv-python
```
下面是一个简单的例子,展示如何进行这两个步骤:
**1. 矩形矫正:**
假设我们有一个倾斜的矩形图片,我们可以先找到图片中的角点(通常通过边缘检测和非极大值抑制),然后用Hough变换找出最接近矩形的角度,并对图片进行旋转矫正。
```python
import cv2
import numpy as np
def rotate_image(image, angle):
# 获取图像中心点
height, width = image.shape[:2]
center = (width // 2, height // 2)
# 计算旋转矩阵
rotation_matrix = cv2.getRotationMatrix2D(center, angle, scale=1)
# 应用旋转并返回
rotated_image = cv2.warpAffine(image, rotation_matrix, (width, height))
return rotated_image
# 加载图像并进行灰度处理
image = cv2.imread('input_image.jpg', cv2.IMREAD_GRAYSCALE)
edges = cv2.Canny(image, threshold1=50, threshold2=150) # 边缘检测
# 找到角点
vertices = cv2.goodFeaturesToTrack(edges, minDistance=5, maxCorners=4, qualityLevel=0.01, minRepeatability=3)
corners = np.int0(cv2.cornerSubPix(image, vertices, (5, 5), (-1, -1), criteria))
# 使用Hough变换找到可能的矩形角度
lines = cv2.HoughLinesP(edges, rho=1, theta=np.pi / 180, threshold=100, lines=np.array([]), minLineLength=50, maxLineGap=10)
if lines is not None:
angles = [line[1][1] for line in lines]
angle = np.mean(angles)
rotated_image = rotate_image(image, angle * 180 / np.pi) # 根据角度旋转图像
cv2.imwrite('rotated_image.jpg', rotated_image)
```
**2. 瓶子盖轮廓提取:**
对于瓶子盖轮廓,你可能会用霍夫环检测来识别圆形,然后再结合膨胀操作来寻找相对完整的轮廓。
```python
# 对矫正后的图像进行二值化
_, binary = cv2.threshold(rotated_image, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
# 霍夫环检测找圆
circles = cv2.HoughCircles(binary, cv2.HOUGH_GRADIENT, dp=1, minDist=50, param1=50, param2=30, minRadius=10, maxRadius=50)
if circles is not None:
circles = np.round(circles[0, :]).astype("int")
for (x, y, r) in circles:
cv2.circle(rotated_image, (x, y), r, (0, 255, 0), 2) # 绘制轮廓
cropped_circle = rotated_image[y-r:y+r+1, x-x:x+x+1] # 提取轮廓区域
cv2.imshow('Bottle Cap Outline', rotated_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
阅读全文