修改以下代码,使用AdamW
时间: 2024-10-03 12:00:35 浏览: 49
当然,如果你有一个使用旧式`BertAdam`的例子,我们可以将其转换为使用`AdamW`。假设原始代码如下:
```python
from transformers.optimization import BertAdam
optimizer = BertAdam(model.parameters(), lr=0.001, betas=(0.9, 0.999), eps=1e-08)
```
将它替换为使用`AdamW`的版本,只需要从`optimization`模块移除引用,并更新参数:
```python
from transformers.optimization import AdamW
# 设置学习率和优化器其他参数
lr = 0.001
eps = 1e-6 # 更新epsilon值(默认一般比BertAdam小)
weight_decay = 0.01 # 添加权重衰减项(如果需要)
optimizer = AdamW(model.parameters(), lr=lr, betas=(0.9, 0.999), eps=eps, weight_decay=weight_decay)
```
在这个例子中,我们添加了`weight_decay`参数,并可能根据实际需求调整`eps`值。
相关问题
mmdetection更改优化器为adamw
要将mmdetection的优化器更改为AdamW,你可以按照以下步骤进行操作:
1. 打开配置文件,找到原来的优化器配置。例如,原来的优化器是SGD,学习率为0.02:
```
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
```
2. 修改优化器的配置,将类型改为AdamW,并设置新的学习率和权重衰减参数。例如,将优化器改为AdamW,学习率为0.0001,权重衰减为0.0001:
```
optimizer = dict(type='AdamW', lr=0.0001, weight_decay=0.0001)
```
3. 保存配置文件并重新运行代码,新的优化器配置就会生效了。
请注意,修改优化器只会影响优化器的参数,其他参数不受影响。所以在修改优化器配置时,确保你只修改了需要更改的部分,而不是整个配置文件。
上述代码根据这个提示:BertModel的权重没有从模型检查点中初始化,这意味着我们应该为它的下游任务训练它,并使用训练后的模型进行预测和推理,对于这个问题,可以参考以下步骤: 1.为你的下游任务收集训练数据。 2.根据需要修改Bert的配置文件。 3.加载预训练模型并根据你的任务进行微调。 4. 针对验证和测试数据评估训练好的模型。 5.使用训练好的模型进行预测和推理。上述代码该如何去优化?给出优化后的代码
根据提示,需要进行微调,因此需要添加微调的代码。下面给出优化后的代码:
```
import jieba
import torch
from transformers import BertTokenizer, BertModel, BertConfig, AdamW, get_linear_schedule_with_warmup
# 自定义词汇表路径
vocab_path = "output/user_vocab.txt"
count = 0
with open(vocab_path, 'r', encoding='utf-8') as file:
for line in file:
count += 1
user_vocab = count
# 种子词
seed_words = ['姓名']
# 加载微博文本数据
text_data = []
with open("output/weibo_data(small).txt", "r", encoding="utf-8") as f:
for line in f:
text_data.append(line.strip())
# 加载BERT分词器,并使用自定义词汇表
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese', vocab_file=vocab_path)
config = BertConfig.from_pretrained("bert-base-chinese", vocab_size=user_vocab)
# 加载BERT模型
model = BertModel.from_pretrained('bert-base-chinese', config=config, ignore_mismatched_sizes=True)
# 添加微调代码
# 定义微调的超参数
epochs = 3
batch_size = 32
learning_rate = 2e-5
warmup_steps = 100
max_length = 128
# 定义优化器和学习率调度器
optimizer = AdamW(model.parameters(), lr=learning_rate, correct_bias=False)
total_steps = len(text_data) * epochs // batch_size
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps, num_training_steps=total_steps)
# 将数据集转换为张量
def create_tensors(texts, labels):
input_ids = []
attention_masks = []
for text in texts:
encoded_dict = tokenizer.encode_plus(
text,
add_special_tokens=True, # 添加特殊标记,如[CLS]和[SEP]
max_length=max_length, # 设定最大长度
pad_to_max_length=True, # 不足最大长度则在末尾进行填充
return_attention_mask=True, # 返回注意力掩码
return_tensors='pt' # 返回张量
)
input_ids.append(encoded_dict['input_ids'])
attention_masks.append(encoded_dict['attention_mask'])
input_ids = torch.cat(input_ids, dim=0)
attention_masks = torch.cat(attention_masks, dim=0)
labels = torch.tensor(labels)
return input_ids, attention_masks, labels
# 定义微调函数
def fine_tune(text_data):
model.train()
for epoch in range(epochs):
for i in range(0, len(text_data), batch_size):
batch_texts = text_data[i:i+batch_size]
input_ids, attention_masks, labels = create_tensors(batch_texts, [0] * len(batch_texts)) # 标签设为0
optimizer.zero_grad()
outputs = model(input_ids, attention_masks)
last_hidden_state = outputs[0]
pooled_output = last_hidden_state[:, 0, :]
logits = torch.cosine_similarity(pooled_output, model.bert.pooler.dense.weight.T)
loss = torch.mean(1 - logits)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
scheduler.step()
# 调用微调函数
fine_tune(text_data)
# 构建隐私词库
privacy_words = set()
privacy_words_sim = set()
for text in text_data:
words = jieba.lcut(text.strip())
tokens = ["[CLS]"] + words + ["[SEP]"]
token_ids = tokenizer.convert_tokens_to_ids(tokens)
segment_ids = [0] * len(token_ids)
# 转换为张量,调用BERT模型进行编码
token_tensor = torch.tensor([token_ids])
segment_tensor = torch.tensor([segment_ids])
model.eval()
with torch.no_grad():
outputs = model(token_tensor, segment_tensor)
encoded_layers = outputs[0]
# 对于每个词,计算它与种子词的余弦相似度
for i in range(1, len(tokens) - 1):
word = tokens[i]
if word in seed_words:
continue
if len(word) <= 1:
continue
sim_scores = []
for j in range(len(seed_encoded_layers)):
sim_scores.append(torch.cosine_similarity(seed_encoded_layers[j][0], encoded_layers[j][i], dim=0).item())
cos_sim = sum(sim_scores) / len(sim_scores)
print(cos_sim, word)
if cos_sim >= 0.5:
privacy_words.add(word)
privacy_words_sim.add((word, cos_sim))
# 输出隐私词库
with open("output/privacy_words.txt", "w", encoding="utf-8") as f1:
for word in privacy_words:
f1.write(word + '\n')
with open("output/privacy_words_sim.txt", "w", encoding="utf-8") as f2:
for word, cos_sim in privacy_words_sim:
f2.write(word + "\t" + str(cos_sim) + "\n")
```
在优化后的代码中,我们添加了微调的代码。具体来说,我们定义了微调的超参数,包括epochs、batch_size、learning_rate、warmup_steps和max_length。然后我们定义了优化器和学习率调度器,并且编写了create_tensors函数将数据集转换为张量。接着我们定义了fine_tune函数进行微调,然后调用fine_tune函数进行微调。最后,我们计算隐私词库的余弦相似度,并输出结果。
阅读全文